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The dynamics and structure of nonequilibrium liquids, driven by nonconservative forces which can be
either external or internal, generically hold the signature of the net dissipation of energy in the thermostat.
Yet, disentangling precisely how dissipation changes collective effects remains challenging in many-body
systems due to the complex interplay between driving and particle interactions. First, we combine explicit
coarse-graining and stochastic calculus to obtain simple relations between diffusion, density correlations,
and dissipation in nonequilibrium liquids. Based on these results, we consider large-deviation biased
ensembles where trajectories mimic the effect of an external drive. The choice of the biasing function is
informed by the connection between dissipation and structure derived in the first part. Using analytical and
computational techniques, we show that biasing trajectories effectively renormalizes interactions in a
controlled manner, thus providing intuition on how driving forces can lead to spatial organization and
collective dynamics. Altogether, our results show how tuning dissipation provides a route to alter the
structure and dynamics of liquids and soft materials.
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I. INTRODUCTION

Nonequilibrium forces can drive novel and specific
pathways to modulate phase transitions and self-assembly
in materials. The close connection between the net dis-
sipation of energy, powered by these forces, internal
transport, and spatial organization is especially apparent
in living systems [1–4]. As an example, the flagella motors
of Escherichia coli exhibit a unique phenomenology
combining ultrasensitive response, adaptation, and motor
restructuring as a function of the applied load [5–7].
Moreover, in vivo studies of the cellular cytoskeleton, as
well as in vitro experiments on reconstituted systems, also
show that motor-induced forces control a large variety of
functionality in the cell [8–12].
To elucidate the role of nonequilibrium forces in materi-

als, it is crucial to examine how dissipation affects the
emerging dynamics and structure. While equilibrium

features arewell established, progress in controlling systems
with sustained dissipation is hampered by a lack of general
principles [13–19]. In this context, minimal models of active
and driven systems provide analytically and numerically
tractable test beds to investigate the interplay between
dissipation and material properties far from equilibrium
[20–24]. They illustrate, for instance, how nonequilibrium
driving can induce phase transitions and excite novel
collective responses in soft media [15,21,25–27]. Recent
theoretical work proposes extending equilibrium concepts
to active media, such as the definition of pressure [14,28], to
rationalize their phenomenology [29,30]. Others strive to
obtain stationary properties of active matter through per-
turbation close to equilibrium [16,31,32], inspired by other
approaches on driven systems [33–36].
To investigate how dissipation controls emerging behav-

ior, yet another approach focuses on introducing a bias in
dynamical ensembles. Using large-deviation techniques,
trajectories are conditioned to promote atypical realizations
of the dynamics [37,38]. Such techniques are used, for
instance, to investigate the role of dynamical hetero-
geneities in glassy systems [39–45] and soliton solutions
in high-dimensional chaotic chains [46,47]. More recently,
it has been shown that changing dissipation, through a
dynamical bias, strongly affects the internal transport and
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the density fluctuations of nonequilibrium liquids [48,49],
thus confirming that controlling dissipation is indeed a
fruitful route to tailoring material properties. In spite of
these advances, anticipating the emergent dynamics and
structure of biased nonequilibrium systems is still chal-
lenging in the presence of many-body interactions [38,50],
so that precise control has remained elusive so far in this
context. Consequently, any generic principle rationalizing
spatial organization in terms of dissipation is still lacking.
In this paper, we explore how dissipation affects the

dynamics and structure of many-body diffusive systems.
First, we consider in Sec. II two types of assemblies of
Brownian particles: one in which only a subset is driven by
an external force and one in which a subset of the particles
experience an internal active force. We first focus on
instances where the fraction of driven particles is less than
the fraction of undriven particles, so that driven and
undriven particles are, respectively, referred to as tracer
and bath particles. Using the diffusion coefficient of a
tagged tracer particle and the density correlations between
tracer and bath particles, we connect dissipation to liquid
properties. In contrast to Ref. [23], our prediction for
diffusion follows from a systematic coarse graining with
explicit dependence in terms of microscopic details
[51–53].
Next, importantly, we put forward a generic relation

between density correlations and dissipation valid for an
arbitrary driving force: This relation is our first main result.
We demonstrate that this result holds both for fluids in
which a fraction of the particles are driven by a fixed
external drive and for fluids in which either a fraction of the
liquid or the entire liquid is driven by an internal noise,
analogous to the driving used in model active matter
systems. This result opens the door to estimating dissipa-
tion directly from the liquid structure, in contrast to
previous approaches based either on perturbing the system
[54–58] or on analyzing trajectories and currents in phase
space [3,59–62]. We illustrate this result with numerical
simulations for which dissipation is quantified by the
deviation from equilibrium tracer-bath correlations.
Using these results as a basis, we also show how various
aspects of the pair correlation function of a nonequilibrium
liquid are effectively constrained by the energy dissipation.
Altogether, this set of results clarifies how nonequilibrium
forces affect the transport and structure of the liquid, thus
showing how liquid properties can be modified at the cost
of energy dissipation.
Motivated by these results, and to provide concrete

intuition for how particular configurations can be stabilized
by nonequilibrium forces, we next investigate in Sec. III the
emerging structure of Brownian particles subject to a
dynamical bias. The explicit form of the bias is inspired
by the results of Sec. II connecting dissipation to many-
body interactions. Using analytical calculations and
numerical simulations based on the cloning algorithm

[46,63–68], we show that biased sampling trajectories
can be used to renormalize any specific interparticle
interaction in a multicomponent liquid. The rare noise
fluctuations sampled with dynamical bias effectively drive
the system away from typical behavior [38–45,50]. Such
noise realizations can then serve as proxies of how to
control the dynamics by applying an external force with
complex protocols. We also illustrate the generality of our
ideas by considering an assembly of aligning self-propelled
particles [69]. Specifically, we show how biased energy
flows can renormalize interactions between particles and
stabilize a flocking transition. Overall, our results lay the
groundwork for precise control of the emerging structure
and collective dynamics in many-body diffusive nonequi-
librium systems.

II. DISSIPATION AND LIQUID PROPERTIES

In this section, we provide a series of relations between
energy dissipation and liquid properties in nonequilibrium
liquids. Specifically, we consider interacting Brownian
particles where a specific set of particles Ω is driven by
a nonconservative force Fd;i:

γ_ri ¼ δi∈ΩFd;i −∇i

X
j

vðri − rjÞ þ ξi; ð1Þ

where δi∈Ω ¼ 1 if i ∈ Ω and δi∈Ω ¼ 0 otherwise. The
driven particles belonging to the set Ω are referred to as
tracers and others as bath particles. The fluctuating term ξi
is a zero-mean Gaussian white noise with correlations
hξiαðtÞξjβð0Þi ¼ 2γTδijδαβδðtÞ, where γ and T, respec-
tively, denote the damping coefficient and the bath temper-
ature, with the Boltzmann constant set to unity (kB ¼ 1).

A. Deterministic vs active drive

In what follows, we consider two types of drive: (i) an
external force following the same deterministic protocol for
all driven particles and (ii) an internal force given by a noise
term independent for each driven particle. Building on
recent work [21,23], we take for drive (i) a time-periodic
protocol given in two dimensions by

FdðtÞ ¼ f½sinðωtÞêx þ cosðωtÞêy�; ð2Þ

where f and ω are, respectively, the amplitude and the
frequency of the drive, so that the drive persistence reads
τ ¼ 2π=ω. The relative strength of the drive is given by the
Péclet number Pe ¼ σf=T, where σ is the typical particle
size [21,23]. In the absence of interactions (v ¼ 0), the
average position of driven tracers follows a periodic orbit,
describing a circle in two dimensions. In contrast, drive
(ii) corresponds to a random self-propulsion as is often
considered in active liquids [70–72]. Specifically, we use a
set of zero-mean Gaussian noises with correlations
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hFd;iαðtÞFd;jβð0Þi ¼ δijδαβ
f2

d
e−jtj=τ; ð3Þ

where d is the spatial dimension. The parameters f and τ,
respectively, control the amplitude and the persistence of
fluctuations.
Interestingly, the active force with correlations (3) can be

obtained from a generalized version of the deterministic
force (2) where each particle i is now subjected to an
independent drive. The period of the orbit is determined by
a series of n oscillators with identical frequencies for all
particles yet independent amplitudes:

Fd;iðtÞ ¼
fffiffiffiffiffiffi
nd

p
Xn
a¼1

½Aai cosðωatÞ þ Bai sinðωatÞ�: ð4Þ

The essential ingredient of the mapping into active force is
to implement disorder in the drive, which is done by taking
the oscillator amplitudes as uncorrelated zero-mean
Gaussian variables with unit variance:

hAaiαAbjβid ¼ δabδijδαβ ¼ hBaiαBbjβid; ð5Þ

where h·id denotes an average over the disorder. It follows
that Fd;i is also a Gaussian process with zero mean and
correlations given by

hFd;iαðtÞFd;jβð0Þid ¼ δijδαβ
f2

nd

Xn
a¼1

cosðωatÞ: ð6Þ

In the limit of a large number of oscillators (n ≫ 1), we
express these correlations in terms of the density of driving
frequencies ϕ as

hFd;iαðtÞFd;jβð0Þid ¼
n≫1

δijδαβ
f2

d

Z
ϕðω0Þeiω0jtj dω

0

2π
: ð7Þ

This expression establishes that, in the limit of many
oscillators, the deterministic drive (4) with disordered
amplitude is equivalent to a noise term with spectrum ϕ.
In particular, by choosing ϕðω0Þ ¼ 2τ=½1þ ðω0τÞ2�, the
drive correlations (7) reproduce exactly the ones of the
random force in Eq. (3).
To illustrate the relevance of this mapping, we simulate

numerically the many-body dynamics (1) where every
particle is subjected to a disordered drive of the form
(4). We use the potential vðrÞ ¼ v0ð1 − jrj=σÞ2Θðσ − jrjÞ,
where Θ denotes the Heaviside step function, which sets
purely repulsive interactions. To implement numerically the
disorder in driving, it is sufficient to sample the amplitudes
fAai;Baig and frequencies fωig at the initial time. In the
regime of high persistence τ and large average density ρ0,
we observe the spontaneous formation of clusters up to a
complete formation at a large time; see Fig. 1. This
formation is analogous to the motility-induced phase

separation commonly reported in standard models of active
particles [13,26]. Interestingly, it appears in our case even
in the absence of fluctuations (T ¼ 0), namely, for a purely
deterministic set of equations.
In short, we thus demonstrate that the disordered drive

alone reproduces the emerging physics of active systems.
This important result bridges the gap between two main
classes of nonequilibrium liquids, where the driving force
stems from either a deterministic protocol or a random
noise. In what follows, we obtain analytic and numerical
results for both drives to illustrate the broad applicability of
our framework, ranging from systems driven by determin-
istic fields to active matter systems.

B. Dissipation controls tracer diffusion

To connect tracer diffusion with dissipation, we first
describe the dynamics of undriven particles in terms of a
coarse-grained variable. Using standard techniques, the
dynamics of the density field ρðr; tÞ ¼ P

i∉Ω δ½r − riðtÞ�
can be written as a nonlinear Langevin equation [51]. In the
regime of weak interactions, the density fluctuations
δρðr; tÞ ¼ ρðr; tÞ − ρ0 around the average density ρ0 are
Gaussian and captured by the following Hamiltonian
[53,74,75]:

H ¼ T
2

Z
δρðrÞKðr − r0Þδρðr0Þdrdr0

þ
Z X

i∈Ω
vðr − riÞρðrÞdr; ð8Þ

where KðrÞ ¼ δðrÞ=ρ0 þ vðrÞ=T. Note that density fluc-
tuations remain generally Gaussian even for a homo-
geneous active liquid [70]. The conserved density
dynamics reads

FIG. 1. Snapshot of particles subjected to a disordered drive. A
phase separation emerges which is analogous to the motility-
induced phase separation of active particles [13,26]. Simulation
details are in the Appendix A and the movie in Ref. [73].
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∂δρðr; tÞ
∂t ¼ DG∇2

Z
Kðr − r0Þδρðr0; tÞdr0

þ 1

γG
∇2

X
i∈Ω

v½riðtÞ − rjðtÞ� þ∇ · Λðr; tÞ; ð9Þ

where DG ¼ ρ0T=γ and γG ¼ γ=ρ0 are, respectively, the
field diffusion coefficient and the field damping coefficient.
The term Λ is a zero-mean Gaussian white noise with
correlations hΛαðr;tÞΛβðr0;t0Þi¼2DGδαβδðr−r0Þδðt−t0Þ.
Owing to the linearity of the density dynamics (9),

it can be readily written in Fourier space δρðq; tÞ ¼R
ρðr; tÞe−iq·rdr as

∂δρðq; tÞ
∂t ¼ −jqj2DGKðqÞδρðq; tÞ

− jqj2 vðqÞ
γG

X
j∈Ω

e−iq·rjðtÞ þ iq · Λðq; tÞ; ð10Þ

so that the field dynamics can be directly solved as

δρðq; tÞ ¼
Z

t

−∞
dse−DGjqj2KðqÞðt−sÞ

×

�
iq · Λðq; sÞ − jqj2 vðqÞ

γG

X
j∈Ω

e−iq·rjðsÞ
�
: ð11Þ

Considering the limit of dilute driven tracers, where
interactions among them are negligible, their dynamics
reads

γ _rj ¼ Fd þ ξj −
Z
q
iqvð−qÞeiq·rjðtÞδρðq; tÞ; ð12Þ

with
R
q ¼ R

dq=ð2πÞd. As a result, Eqs. (11) and (12)
provide closed time-evolution equations for tracers only. It
should be valid only for weak interactions a priori, yet
previous works show that it remains qualitatively relevant
even beyond this regime in practice [76–78]. Indeed,
Gaussian field theories for density fluctuations provide a
very good description of simple liquids [74].
To characterize the transport properties of the liquid in

the presence of driving forces, our first goal is to obtain an
explicit expression, in terms of microscopic details, for the
tracer diffusion coefficient:

D ¼ lim
t→∞

1

2dt
h½hriðtÞi − riðtÞ�2i: ð13Þ

We aim to explore connections between D and dissipation,
which is defined from stochastic thermodynamics as the
power of the forces exerted by all tracers on solvent:
J ¼ P

ih_ri · ðγ _ri − ξiÞi, where · denotes a Stratonovich
product [79,80]. Dissipation is directly related to entropy
production, as a measure of irreversibility, both when the

drive is deterministic [79,80] and when it is a correlated
noise [81–84]. Substituting the dynamics (1), the dissipa-
tion coincides with the power of driving forces:
J ¼ P

i∈Ωh_ri · Fd;ii. Besides, replacing _ri by its expres-
sion in Eq. (1) and using the fact that ξi and Fd;i are
uncorrelated, we deduce that the dissipation can be further
separated into free-motion and interaction contributions as
J ¼ Nf2=γ − _w, where the rate of work reads

_w ¼ 1

γ

X
i∈Ω;j

hFd;i ·∇ivðri − rjÞi: ð14Þ

Given that _w is the only nontrivial contribution to dis-
sipation, connecting diffusion and dissipation simply
amounts to expressing D in terms of _w.
Deriving transport coefficients in nonequilibrium many-

body systems, whose collective effects result from the
complex interplay between interaction and driving forces,
is a notoriously difficult task [85–89]. We set up a proper
perturbation scheme by scaling the pair potential v with a
small dimensionless parameter h ≪ 1 which controls the
coupling between tracer and bath. In Appendix B, we
obtain some explicit expressions for D and _w to quadratic
order in h and in the scaled driving amplitude Pe.
First, we discuss the case of the deterministic drive (2),

and we focus on the limits of small and large driving
frequency, respectively, ωτr ≪ 1 and ωτr ≫ 1, where the
relaxation timescale τr ¼ ðDG=σ2ÞKðjqj ¼ 1=σÞ is set by
density diffusion over the tracer size σ. First, at high
frequencies ωτr ≫ 1, the rate of work per particle _w=N and
the deviation from equilibrium diffusion D −Deq, where
Deq is the diffusion coefficient for Pe ¼ 0, are given,
respectively, by

_w
N

¼
�
hPe
ω

�
2

·
ðT=σÞ2
dγ3

Z
q
jqj4jvðqÞj2 1þ ρ0KðqÞ

KðqÞ ;

D −Deq ¼
�
hPe
ω

�
2

·
T=σ2

dγ3

Z
q

jqj2jvðqÞj2
KðqÞ½1þ ρ0KðqÞ�

: ð15Þ

In the opposite limit of low frequencies ωτr ≪ 1, we get

_w
N

¼ ðhPeÞ2
dγσ2

Z
q

jvðqÞj2
KðqÞ½1þ ρ0KðqÞ� ;

D −Deq ¼
5ðhPeÞ2
dγTσ2

Z
q

jvðqÞj2
jqj2KðqÞ½1þ ρ0KðqÞ�3 : ð16Þ

Both _w=N andD −Deq are now independent of the driving
frequency ω. As a result, our perturbation theory shows that
the scalings of _w andD −Deq are identical, in terms both of
the drive amplitude Pe and of its frequency ω, in asymptotic
frequency regimes. Note that the scaled rate of work
γ _w=ðNf2Þ coincides with the reduced equilibrium diffusion
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γDeq=T − 1 to this order [52,53], as expected from linear
response.
The case of the active drive with correlations (3) follows

by using the mapping between the disordered drive and
active forcing in Sec. II A. In practice, we first derive the
diffusion coefficient D and the rate of work _w for the
driving force (4) at fixed disorder, as a straightforward
generalization of the deterministic driving case, and we
then average over the disorder. At small persistence τ ≪ τr,
we get

_w
N

¼ τTðhPeÞ2
dðσγÞ2

Z
q

jqj2jvðqÞj2
KðqÞ ;

D −Deq ¼
3τðhPeÞ2
dðσγÞ2

Z
q

jvðqÞj2
KðqÞ½1þ ρ0KðqÞ�2 : ð17Þ

In contrast, the large persistence limit τ ≫ τr yields the
same results as for the low-frequencies regime of deter-
ministic drive, namely, the expressions (16). Indeed, the
force Fd;i has a constant direction in such a limit, and the
difference between deterministic and active drives, which,
respectively, correspond to independent or similar direc-
tions for each tracer, is irrelevant in the limit of dilute
tracers.
When the size a of the bath particles is significantly

smaller than the tracer size σ ≫ a, which amounts to setting
different pair potentials v for bath-bath and for bath-tracer
interactions, one can safely neglect the variation of KðqÞ in
Eqs. (15)–(17), so thatKðqÞ ≃ Kðjqj ¼ 1=aÞ. Then, in both
regimes ωτr ≫ 1 (τ ≪ τr) and ωτr ≪ 1 (τ ≫ τr), the
renormalization of the diffusion coefficient D −Deq can
be simply written in terms of the rate of work per particle
_w=N for Pe ≪ 1 as

D −Deq

σ2
∼

_w
NT

: ð18Þ

Thus, the excess rate at which tracers move over their own
size compared to equilibrium, set by the lhs of Eq. (18), is
controlled by the rate at which work is applied on tracers by
nonequilibrium forces, set by the rhs of Eq. (18). The
proportionality factor depends on the details of interactions
and of density fluctuations. Interestingly, this result is valid
for both deterministic and active drives. It corroborates
numerical observations obtained previously in a system
where composition-dependent diffusion constants can lead
to phase transitions [23].

C. Dissipation sets density correlations

We now explore how dissipation relates to static density
correlations of the liquid. To this end, we treat undriven
bath particles without any approximation in what follows,
instead of relying on the Gaussian density field theory for
δρ as in Sec. II B, and we consider an arbitrary set of

driving forces Fd;i. In equilibrium, the liquid structure can
be derived from a hierarchy of equations for density
correlations, whose explicit form reflects the steady-state
condition on the many-body distribution function [90]. In
our settings, steady-state conditions should now provide
modified equations for density correlations, which can
potentially make apparent the connection with dissipation.
This observation motivates us to consider the average

rate at which the potential U ¼ P
i∈Ω;j vðri − rjÞ changes,

which can be written using Itô calculus as

γh _Ui ¼
X
i∈Ω;j

h½γð_ri − _rjÞ þ 2T∇i� ·∇ivðri − rjÞi: ð19Þ

Substituting the dynamics (1) and using hξi · ∇ivi ¼ 0
within the Itô convention, we get

γh _Ui ¼
X
i∈Ω;j

ð1þ δj∈ΩÞhFd;i ·∇ivðri − rjÞi

þ
X

i∈Ω;j;k
h½∇ivðri − rjÞ� ·∇k½vðri − rkÞ− vðrj − rkÞ�i

þ
X
i∈Ω;j

2Th∇2
i vðri − rjÞi: ð20Þ

In the first line of Eq. (20), we recognize the rate of work _w
as defined in Eq. (14) and the term γ _wact ¼

P
fi;jg∈ΩhFd;i ·

∇ivðri − rjÞi which quantifies the contribution of inter-
actions among driven particles to dissipation. The latter
vanishes exactly when the drive is identical for all particles,
since

P
fi;jg∈Ω∇ivðri − rjÞ ¼ 0 by symmetry, and it can be

neglected for an active drive when the fraction of driven
particles is small. Then, using the steady-state condition
h _Ui ¼ 0, we deduce

_wþ _wact ¼
2ρ0
γ

Z
gðrÞf½∇vðrÞ�2 − T∇2vðrÞgdr

þ ρ20
γ

ZZ
½g3aðr; r0Þ þ g3bðr; r0Þ�

× ½∇vðrÞ� · ½∇vðr0Þ�drdr0; ð21Þ

where

gðrÞ¼ 1

N

X0

i∈Ω;j
hδðr−riþrjÞi;

g3aðr;r0Þ¼
1

N2

X0

i∈Ω;j;k
hδðr−riþrjÞδðr0−riþrkÞi;

g3bðr;r0Þ¼
1

N2

X0

i∈Ω;j;k
hδðr−riþrjÞδðr0−rjþrkÞi; ð22Þ

and
P0

denotes a sum without the overlap of indices: i ≠ j,
k ≠ i, and k ≠ j. The power balance (21), valid for an
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arbitrary driving, either deterministic or active, is our first
main result. Importantly, it holds for generic interactions
and for any number of driven particles, namely, not only in
the limit of dilute tracers, in contrast with the results in
Sec. II B.
In practice, it reflects how density correlations adapt to

the presence of nonequilibrium forces. For a vanishing rate
of work ( _w ¼ 0 ¼ _wact), one recovers the first order of the
equilibrium Yvon-Born-Green (YBG) hierarchy, in its
integral form, for two-component fluids [90]. At a finite
rate of work ( _w ≠ 0), the relation between the two-body
correlation g and the three-body terms fg3a; g3bg is now
implicitly constrained by dissipation. A direct implication
is that the rate of work can now be inferred simply by
measuring static density correlations, provided that the
pairwise interaction potential is known, for a given driven
liquid. Importantly, such an approach does not require any
invasive methods based on comparing fluctuations and
response [54–58], and it does not rely on a detailed analysis
of particle trajectories [60,61] or currents in phase space
[59,62], whose experimental implementation can require
elaborate techniques [3,4].
However, the power balance (21) is not straightforward

to test, either numerically or experimentally, due to the
three-body correlations. In equilibrium, where tracer and
bath particles are indistinguishable, we get g3a ¼ g3b.
Assuming that this result remains approximately valid in
the driven case for a small fraction of tracers, the rate of
work can simply be written in terms of the force exerted on
a tracer Fi ¼ −

P
j ∇ivðri − rjÞ as

_w ≃
2

γ

X
i∈Ω

½hF2
i i þ Th∇i · Fii�: ð23Þ

To probe the validity of this result, we simulate the
dynamics (1) where 10% of particles are subject to the
driving force, considering either the deterministic periodic
drive (2) or the active noise drive (3). Interactions are
set by the Weeks-Chandler-Andersen potential vðrÞ ¼
4v0½ðσ=jrjÞ12 − ðσ=jrjÞ6�Θð21=6σ − jrjÞ [91]. Our measure-
ments in Fig. 2 show that Eq. (23) is indeed a good
approximation at small Pe and small τ, namely, when the
drive only weakly perturbs the liquid. The discrepancy is
higher for the active case compared with the deterministic
one, since _wact ¼ 0 in the latter without any approximation.
In contrast to previous approaches [3,54,92], which rely on
prospecting the whole system, our results demonstrate that
the rate of work can actually be evaluated with only a small
error by considering solely forces acting on tracer: The
contribution of forces on other particles is negligible for a
small fraction of driven tracers.
To evaluate further the change in liquid structure induced

by dissipation, we measure the deviation from equilibrium
pair correlations g − geq due to the driving forces (left
column in Fig. 3). In particular, inspired by the two-body

contribution in the power balance (21), we focus on the
observable I ¼ ½ð∇vÞ2 − T∇2v�ðg − geqÞ. At a given τ,
scaling I by Pe2 reveals that all curves almost collapse into
a master curve for our numerical range Pe ∈ ½12; 36�, as
reported in the middle column in Fig. 3. In practice,
particles overlap more for a stronger drive, so that g departs
from zero at a smaller interparticle distance. To correct for
this aspect, we introduce a shift of the curves IðjrjÞ as
jrj → jrj þ a, where aðPeÞ is a fitting parameter. Given that
the rate of work also scales like Pe2, it suggests the
existence of an underlying relation between

R
IðrÞdr

and _w. In practice, a linear fitting provides a satisfactory

(a)

(b)

FIG. 2. Parametric plot of the rate of work _w=T and of the
statistics of bath-tracer forces

P
i∈Ω½hF2

i i þ Th∇i · Fii�=ðγTÞ
when 10% of particles are driven by either (a) a deterministic
force or (b) an active force. The solid line with slope 2 refers to
the approximate relation (23). The satisfying agreement with
numerical data indicates that the rate of work can be estimated by
only measuring bath-tracer forces. The simulations are performed
with N ¼ 4500 particles using the procedure described in
Appendix A. Parameters: Pe ¼ 12 (hexagons), 18 (square),
24 (triangle), 30 (circle), and 36 (diamond); (a) τT=ðγσ2Þ ¼
2 × 10−1 (black), 3 × 10−1 (brown), 4 × 10−1 (red), and 5 × 10−1

(orange); (b) τT=ðγσ2Þ ¼ 2 × 10−2 (black), 3 × 10−2 (brown),
4 × 10−2 (red), and 5 × 10−2 (orange).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 3. Connecting dissipation and structure for a liquid where 10% of particles are driven by either deterministic or active forces.
(Left) Bath-tracer density correlation g as a function of interparticle distance r=σ. The blue solid line corresponds to the equilibrium
correlation function geq for Pe ¼ 0. (Middle) Deviation from equilibrium correlations I ¼ ½ð∇vÞ2 − T∇2v�ðg − geqÞ scaled by Pe2 as a
function of ðrþ aÞ=σ, where aðPeÞ is a fitting parameter. The data almost collapse into a master curve for each row, namely, at a given τ.
(Right) Parametric plot of the rate of work _w=T and the integrated deviation from equilibrium correlations ρ0

R
IðrÞdr=ðγTÞ showing a

linear relation. The black solid line with slope α is the best linear fit, and the marker colors refer to the same Péclet values as in the
left and right columns. Simulation details are in Appendix A. Parameters: fτT=ðγσ2Þ; αg ¼ f2 × 10−1; 1.50g (a)–(c), f5 × 10−1; 1.41g
(d)–(f), f2 × 10−2; 1.38g (g)–(i), and f5 × 10−2; 1.33g (j)–(l).
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agreement between them, as shown in the right column in
Fig. 3:

_w ¼ αρ0
γ

Z
½gðrÞ − geqðrÞ�f½∇vðrÞ�2 − T∇2vðrÞgdr; ð24Þ

where α is a fitting parameter independent of the Péclet
number. This empirical relation demonstrates that, in the
limit of dilute tracers, the rate of work can actually be
directly estimated by comparing driven and equilibrium
pair correlations for both deterministic and active drives.
Comparing Eqs. (21) and (24), we deduce the following
integral relation between density correlations:

Z
½ð2 − αÞgðrÞ þ αgeqðrÞ�fT∇2vðrÞ − ½∇vðrÞ�2gdr

¼ ρ0

ZZ
½g3aðr; r0Þ þ g3bðr; r0Þ�½∇vðrÞ� · ½∇vðr0Þ�drdr0:

ð25Þ

Interestingly, it is reminiscent again of the connection
between density correlations provided by the YBG hier-
archy at equilibrium [90]. Similarly, the relation (25)
amounts to a constraint on density correlations, now valid
for nonequilibrium liquids, which could guide the search

for explicit predictions on the emerging structure.
Importantly, it does not rely on any equilibrium mapping,
in contrast to previous works [93–95], since it remains valid
for non-negligible dissipation.
The power balance (21) can actually be extended to the

case where all particles in the liquid are driven as

_w ¼ ρ0
γ

Z
gðrÞf½∇vðrÞ�2 − T∇2vðrÞgdr;

þ ρ20
γ

ZZ
g3ðr; r0Þ½∇vðrÞ� · ½∇vðr0Þ�drdr0; ð26Þ

where g and g3 now refer, respectively, to the two-body and
three-body density correlations among all particles. This
extension leads to an exact relation between the rate of
work and the forces applied to particles Fi as

_w ¼ 1

γ

X
i

½hF2
i i þ Th∇i · Fii�; ð27Þ

which differs from the relation (23) for driven tracers by an
overall factor of 2. A result analogous to Eq. (27) was found
previously for a deterministic drive [36,96]. The main
difference is that Eq. (27) features interaction forces Fi only
in the rhs, thus allowing one to evaluate the rate of work

(b) (c)

(d) (e) (f)

FIG. 4. Connecting dissipation and structure for a liquid where 100% of particles are driven by an active force. (Left) Density
correlation g as a function of interparticle distance r=σ. The blue solid line corresponds to the equilibrium correlation function geq for
Pe ¼ 0. (Middle) Deviation from equilibrium correlations I ¼ ½ð∇vÞ2 − T∇2v�ðg − geqÞ scaled by Pe2 as a function of ðrþ aÞ=σ,
where aðPeÞ is a fitting parameter. The data almost collapse into a master curve for each row, namely, at a given τ. (Right) Parametric
plot of the rate of work _w=T and the integrated deviation from equilibrium correlations ρ0

R
IðrÞdr=ð2γTÞ showing a linear relation. The

black solid line with slope α is the best linear fit, and the marker colors refer to the same Péclet values as in the left and right columns.
Simulation details are in Appendix A. Parameters: fτT=ðγσ2Þ; αg ¼ f2 × 10−2; 1.22g (a)–(c) and f5 × 10−2; 1.14g (d)–(f).
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without any prior knowledge on the driving force. Besides,
it is valid for both deterministic and active drives.
Moreover, conducting the same analysis of density corre-
lations as for driven tracers, I exhibits again a scaling with
Pe2, as reported in Fig. 4. We show that _w and

R
IðrÞdr are

also linearly related. Introducing the linear coefficient as
αρ0=ð2γÞ is consistent with substituting Eq. (25) into
Eq. (26), where g3;a þ g3;b is now replaced by 2g3.
Hence, it demonstrates that the rate of work is also
accessible from the nonequilibrium deviation of pair
correlations in fully driven liquids.
Overall, the results of this section illustrate how dis-

sipation affects the transport and structural properties of
driven liquids, measured in terms of the diffusion coef-
ficient and density fluctuations. These findings motivate the
following question: Can nonequilibrium forces be tuned to
reliably stabilize target configurations? To explore this
question, we rely in what follows on the framework of
large-deviation theory. In practice, our strategy amounts to
biasing trajectories in terms of dissipation, related to many-
body interactions by Eq. (21), to mimic the effect of an
external drive. Following this route, our analytical and
numerical results provide some concrete intuition for how
interactions in a multicomponent system can be control-
lably renormalized by nonequilibrium forces. Hence, we
demonstrate the ability to nucleate structures different from
those characteristic of the equilibrium Boltzmann distribu-
tion to help guide self-assembly [97] and collective motion
[25] far from equilibrium. These results further illustrate the
interplay between energy dissipation and organization in
nonequilibrium many-body settings.

III. INTERACTIONS IN BIASED ENSEMBLES

To investigate how target structures and dynamics can be
promoted by means of a dynamical bias, we begin by
considering a system of interacting Brownian particles
without any driving force:

γ_ri ¼ −∇i

X
j

vðri − rjÞ þ ξi; ð28Þ

where the statistics of the noise term ξi is the same as the
one in Eq. (1). The rate of work _w defined in Eq. (14) is
zero because of the absence of driving. In Sec. II, to obtain
a nonzero rate of energy flow through the system, we
consider an explicit driving force Fd;i, and we explore its
effects on the transport and structural properties of the
liquid. In practice, different types of driving can lead to the
same dissipation. In this section, using the framework of
the large-deviation theory, we take an alternative approach
where the dynamics is now conditioned by enforcing a
required energy flow without any explicit driving. Thus,
exploring how the system adapts to this requirement
provides a new insight into the relation between dissipation

and organization in driven systems, which is distinct from
yet complements the approach in Sec. II.
To this end, we focus on the subset of noise realizations

that are conditioned on a nonzero rate of work. In
particular, these realizations no longer have a zero average,
so that one can redefine the noise term in Eq. (28) as ξi →
ξi þ Faux;i by introducing an auxiliary force Faux;i [38,50].
Hence, the stochastic dynamics given by Eq. (28) with
added force Faux;i provides an explicit case which ensures a
nonzero energy flow rate. In practice, this dynamics can be
drastically different from the original one, thus opening the
door to stabilizing unexpected structure and to promoting
novel collective effects. Interestingly, such a dynamics can
actually be regarded as the optimal strategy to effectively
enforce a target condition on the rate of work [98].
Formally, to study the dynamics conditioned by dis-

sipation, we bias the probability of trajectories. This biasing
is done by introducing an exponential weighting factor
exp½κ R t

0 EðsÞds�, where E is the observable which con-
ditions the dynamics, e.g., energy flow rate, and κ is a
conjugate field. In practice, the relative importance of
biasing in the dynamics is controlled by κ, which, in turn,
controls the average value of E [37]. Before deriving the
central results of this section, namely, relations between
biased energy flow rates and organization, we first intro-
duce a simple example in which the connection between
auxiliary forces and an exponentially biased ensemble can
be clearly seen.

A. Dynamical bias and external forces

To introduce pedagogically our methods, we first show
how biasing trajectories can lead to effectively introducing
a driving force. Inspired by the role of dissipation in
emerging liquid properties, as discussed in Sec. II, we
bias the equilibrium dynamics (28) with the sum of the
dissipation and the rate of work, scaled by T, that would be
produced by applying a constant force Fd to a subset Ω of
particles:

E ¼ 1

γT

X
i∈Ω

Fd · ½γ _ri þ∇iV�; ð29Þ

where V ¼ ð1=2ÞPi;j vðri − rjÞ. The path probability P ∼
exp½−P

i

R
t
0 AiðsÞds� corresponding to this biased ensem-

ble is obtained with standard methods [99,100]:

Ai¼
1

4γT
½γ_riþ∇iV�2−

1

2γ
∇2

i V−
κ

γT
δi∈ΩFd · ½γ _riþ∇iV�;

ð30Þ

where the first two terms correspond to the unbiased
dynamics (28) and the third one to the bias in Eq. (29).
It can also be written as
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Ai ¼
1

4γT
½γ_ri − 2κδi∈ΩFd þ∇iV�2 −

1

2γ
∇2

i V −
κ2

γT
δi∈ΩF2

d:

ð31Þ

As a result, given that the last term in Eq. (31) can be
absorbed in a normalization factor, we deduce that the
trajectories biased by Eq. (29) can be generated, at leading
order, in a physical dynamics where the external force 2κFd
is applied to every particle in Ω. In particular, it does not
feature any long-range interactions which are usually found
in auxiliary dynamics [101].

B. Dynamical bias and modified interactions

To go beyond the case of applying a constant force, we
now seek for a dynamical bias which regulates particle
interactions in a controlled manner. In particular, we
examine cases where the control parameters κij are specific
to particle pairs fi; jg, so that the biasing factor in path
probability now reads exp½Pi;j κij

R
t
0 EijðsÞds�. Now, our

choice for the biasing function Eij is informed by the
connection between the rate of work and many-body
interactions in driven liquids, as detailed in Sec. II C.
Specifically, we observe that the power balance (21) for a
deterministic drive ( _wact ¼ 0) can be written as _w ¼
−
P

i∈Ω;jhLvðri − rjÞi in terms of the evolution operator
of the equilibrium dynamics (28) defined by γL ¼P

i½T∇i −∇iV� · ∇i. This observation motivates us to
consider the following bias:

Eij ¼
1

4T
Lvðri − rjÞ: ð32Þ

In the unbiased ensembles in Sec. II C, hEiji provides a
measure of the rate at which driving forces pump energy
into or extract energy from the specific interaction between
the ith and jth particles. Here, instead of driving the system
with a specific driving force, trajectories are driven by
atypical realizations of the noise generated by biased
sampling.
To explore how this bias modifies interactions, we first

employ a derivation different from the path integral
approach in Sec. III A. Based on the procedure in
Refs. [38,50], the auxiliary physical dynamics, which
has the same statistical properties as in the biased ensemble,
can be constructed by solving the eigenvalue equation

�
Lþ

X
i;j

κijEij

�
Gðfrkg; κÞ ¼ λðκÞGðfrkg; κÞ; ð33Þ

where the eigenvalue λ, parametrized by κij, is the scaled
cumulant-generating function appropriate to Eij. The aux-
iliary dynamics is then defined by replacing the interaction
potential in Eq. (28) by the following auxiliary potential:

Ṽ ¼ 1

2

X
i;j

vðri − rjÞ − 2T lnG: ð34Þ

In practice, computing G is a highly nontrivial procedure
for many-body systems. The explicit solutions considered
so far concern either exclusion processes [66,102,103] or
particle-based diffusive systems restricted to small noise
regimes [104,105] and noninteracting cases in some spe-
cific potentials [106–108].
In our case, a simple expression can be obtained for the

auxiliary potential Ṽi by solving Eq. (33) perturbatively at
small bias parameter κ. Specifically, we expand

λðκÞ ¼
X
ij

κijhEiji þOðκ2Þ;

Gðfrkg; κÞ ¼ Gð0Þ þ
X
ij

κijG
ð1Þ
ij ðfrkgÞ þOðκ2Þ; ð35Þ

where G0 is the uniform eigenvector associated with the
zero eigenvalue. Given that hEiji ¼ 0 in the steady state,
which follows from the vanishing current condition in the
unbiased dynamics (h _vi ¼ 0), the leading nontrivial order
of Eq. (33) reads

X
ij

κij½LGð1Þ
ij þ Gð0ÞEij� þOðκ2Þ ¼ 0: ð36Þ

Substituting the explicit expressions for the biasing func-

tion in Eq. (32), we then deduce that 4TGð1Þ
ij ¼−G0vðri−rjÞ

is a solution of the eigenvalue problem to the order of κ.
The auxiliary potential follows as

Ṽ ¼ 1

2

X
i;j

ð1þ κijÞvðri − rjÞ þOðκ2Þ: ð37Þ

Therefore, biasing with Eq. (32) amounts to changing the
strength of particle interaction by a factor κij specifically
for any pair fi; jg, which is the main result of this section.
While energy flows are sustained by explicit nonequili-

brium forces in Sec. II, we now maintain a nonzero average
for Eij by a biased sampling of trajectories. The corre-
sponding noise realizations can be thought of as an external
protocol, which leads to modifying the energy landscape
sampled by the biased system as given in Eq. (37). Note
that the tuning interaction strength between targeted pairs is
qualitatively consistent with the effect of external driving.
Indeed, phase separation in mixtures of driven and undriven
particles, reported both experimentally and numerically,
can be rationalized in terms of an effective decrease of
specific interactions between these particles [21,23].
Moreover, the techniques in Sec. III A allow one to

anticipate the trajectories generated at higher order when
now biasing with Eq. (32). To this end, we consider the
ensemble where the first-order dynamics, given by the
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potential (37), is biased with exp½R t
0 εðsÞds� defined in

terms of

ε ¼ 1

4γT

X
k

�X
i;j

κij∇kv½riðsÞ − rjðsÞ�
�
2

: ð38Þ

As detailed in Appendix C, this ensemble is equivalent to
biasing the original dynamics (28) with Eq. (32). Thus, the
effect of higher-order bias on trajectories amounts to
maximizing the squared forces in the integrand of
Eq. (38), which effectively tends to cluster particles for
both signs of κij.
Finally, the decomposition between the first-order aux-

iliary potential and higher-order symmetric bias can be
extended to a generic class of biases of the form TEij ¼
LAðri − rjÞ for an arbitrary observable A: The correspond-
ing first-order auxiliary potential V þ 2

P
i;j κijAðri − rjÞ

is now complemented with the higher-order bias (38),
where A replaces v. Such a bias is reminiscent of, yet

qualitatively different from, the escape rate used to promote
dynamical heterogeneity in glassy systems [41,109]. In our
case, clustering is favored for both positive and negative
bias parameters κij. In particular, this result is in contrast
with the emergence of a hyperuniform phase, where large-
scale fluctuations are suppressed, reported when biasing
some hydrodynamic theories of diffusive systems [110].

C. Numerical sampling of biased structures

To illustrate the potential of our bias to control liquid
properties, we focus in what follows on the specific case
κij ¼ κδi∈Ωδj∉Ω, where all pairs between a subset Ω and
other particles are biased with the same strength κ. Here, the
set Ω could, for instance, refer to some tracer particles
immersed in the liquid, to connect with the settings
in Sec. II.
To confirm numerically the validity of our approach, we

first probe the range of the first-order auxiliary dynamics

(a) (b)

(d)(c)

FIG. 5. (a),(b) Average biasing observable
P

i∈Ω;j∉ΩhEijiκ ¼
P

i∈Ω;j∉ΩhLvðri − rjÞiκ=T as a function of bias parameter κ, where L

and v, respectively, denote the evolution operator and the pair potential of the equilibrium dynamics (28). Results from the first-order
auxiliary dynamics (solid lines) and from a direct sampling of the biased ensemble (circles) coincide for a finite range of κ. (c),(d) Biased
density correlation gκ as a function of interparticle distance r=σ obtained from auxiliary dynamics (solid lines) and direct sampling
(dotted lines). At leading order, our dynamical bias effectively renormalizes the potential v by a factor κ for specific pairs of particles
fi ∈ Ω; j ∉ Ωg, in satisfying agreement with direct sampling. This renormalization illustrates the control of liquid structure at small κ
and weak interactions. Simulation details are in Appendix A.
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where interactions are predicted to be simply renormalized.
We compare measurements of

P
i∈Ω;j∉ΩhEijiκ, where h·iκ

denotes an average in the biased ensemble, obtained from
simulations with the renormalized potentials in Eq. (37)
and from a direct sampling of the biased ensemble. The
latter is implemented with a cloning algorithm which
regularly selects and multiplies rare realizations for effi-
cient sampling [46,63–68]. For convenience, interactions
are now given by the soft-core potential vðrÞ ¼
v0 expf−1=½1 − ðjrj=σÞ2�gΘðσ − jrjÞ. For weak inter-
actions (v0 ¼ 4T), we observe a very satisfying agreement
between the two measurements for a finite range of κ, as
reported in Fig. 5(a), which supports the validity of our
perturbation up to an interaction change between −20%
and þ40%. The range of validity decreases as v0=T
increases, as shown in Fig. 5(b), and we expect a similar
trend when also increasing the number of biased pairs.
To explore further the features of this biased ensemble,

we now compare the density correlations of biased pairs
gκðrÞ ∼

P
i∈Ω;j∉Ωhδðr − ri þ rjÞiκ obtained from both

direct sampling and first-order auxiliary dynamics. For
κ ¼ �0.1, we observe that the structural modification
induced by the bias becomes more dramatic as v0=T
increases. The agreement between the cloning and auxiliary
dynamics is good for the whole curve when v0=T ¼ 4,
whereas a deviation appears beyond r ≃ σ when
v0=T ¼ 12, as shown in Figs. 5(c) and 5(d). In both cases,
the region of particle overlap r < σ is well reproduced.
These results corroborate the ability of the first-order
auxiliary dynamics to capture interaction changes as a
simple renormalization of the potential strength. In con-
trast, the tendency for particles to cluster, manifest numeri-
cally in the increased peak value at r ≃ σ, is a higher-order
effect missed by this auxiliary dynamics when v0=T ¼ 12.

Yet, note that the peak value is comparable for κ ¼ �0.1, in
agreement with Eq. (38) being symmetric in κ. Altogether,
these results demonstrate that our bias modulates the liquid
structure in a controlled manner for a small bias and weak
interactions as predicted by Eq. (37).
Finally, we probe numerically the effect of a large bias

(jκj > 1) using direct sampling, to explore configurations
significantly distinct from the one of the equilibrium
dynamics (28). The particles spontaneously tend to cluster
for both positive and negative κ, as shown in Fig. 6 and
movies in Ref. [73]. This result confirms the propensity of
trajectories to maximize interaction forces at a high bias, as
captured by Eq. (38). Importantly, the shape of clusters
differs depending on the sign of κ: A micellelike structure
featuring the particles in Ω at the core (blue) surrounded by
others (red) appears for κ ¼ −3, whereas clusters have a
random composition for κ ¼ 3. Again, this result agrees
with the renormalized interactions being either increased
(κ > 0) or decreased (κ < 0). In practice, the interaction
strength changes sign when κ < −1 according to Eq. (37),
so that the red-blue pairs are effectively attractive for
κ ¼ −3. To optimize the overall energy, the most favorable
configuration then consists in maximizing (minimizing) the
overlap of particles in Ω (not in Ω), which, in turn,
stabilizes a cluster of blues surrounded by reds. In general,
two types of configuration should generically be stabilized
for a given interaction potential v, depending on the sign of
the bias. Overall, this result establishes a reliable proof of
principle for the design of tailored self-assembled struc-
tures with our specific choice of biased ensembles.

D. Bias-induced collective motion

As a final illustration of how collective effects can
be controlled by dynamical bias, we consider a model of

FIG. 6. Configurations obtained from a direct sampling of the biased ensemble where the pair interactions between red and blue
particles are selectively modified. In the unbiased dynamics (κ ¼ 0), interactions are purely repulsive with a soft core which has a similar
strength for all particles, either red or blue, so that the system is homogeneous. The dynamical bias promotes clustering for both signs of
κ, yet it changes interaction selectively for either sign. The repulsion is increased between red and blue particles for κ ¼ 3, and their
interactions become effectively attractive for κ ¼ −3. As a result, the clusters which emerge spontaneously have different structures:
either a random composition of mixed reds and blues (κ ¼ 3) or a micellelike structure with a blue core (κ ¼ −3). This result illustrates
how biasing specific pairs leads to supervised spatial organization. Simulation details are in Appendix A and movies in Ref. [73].
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self-propelled particles where interactions are now medi-
ated only via the angular dynamics [69]:

_ri ¼ V0uðθiÞ; _θi ¼ μr
X
j

T ðθj − θi; ri − rjÞ þ ηiðtÞ;

ð39Þ

where V0 denotes the self-propulsion velocity, uðθÞ ¼
ðcos θ; sin θÞ is the unit vector, and μr is the rotational
mobility. The term ηi is a zero-mean Gaussian white noise
with correlations hηiðtÞηjð0Þi ¼ 2DrδijδðtÞ given in terms
of the rotational diffusion coefficient Dr. To promote
alignment between neighboring particles, we choose the
pairwise torque as T ðθ; rÞ ¼ Θðσ − jrjÞ sin θ=ðπσ2Þ. This
dynamics was originally introduced as a generalization of
the Vicsek model to continuous time [25]. Thus, it exhibits
a transition between a isotropic state for small density ρ0
and large noiseDr and a polar state for large density ρ0 and
small noise Dr. In practice, the linear stability analysis of

the corresponding hydrodynamic equations predicts the
transition to occur when 2Dr ¼ μrρ0 [69]. In what
follows, our aim is to show that such a transition can
also be mediated by tuning interactions with a dynami-
cal bias.
To this end, we take the biasing factor in path proba-

bility as exp½κ R t
0 EθðsÞds�, where the biasing observable Eθ

reads

Eθ ¼ −
1

2

X
i;j

� ∂
∂θi þ

μr
Dr

X
k

T ðθi − θk; ri − rkÞ
�

× T ðθi − θj; ri − rjÞ: ð40Þ
The average value hEθi is proportional to ðd=dtÞPi;j ×
hcosðθi − θjÞΘðσ − jri − rjjÞi, which vanishes in the
steady state. Then, following the procedure detailed in
Sec. III B, we deduce that biasing the dynamics (39) with
Eθ amounts to considering renormalized interactions of the
form

Isotropic state Polar state

 = - 0.2  = 0  = 0.2

(e)

(a) (b) (c)

(d) (e) (f)

FIG. 7. Configurations obtained from a direct sampling of the biased ensemble for aligning self-propelled particles. The color code
refers to the orientation of particles. In the unbiased dynamics (κ ¼ 0), we observe isotropic and polar states, respectively, at large noise
(Dr > D�

r) and small noise (Dr < D�
r ). Here, the critical noise isD�

r ¼ 8, and we take the noise valuesDr ¼ f7; 9g for, respectively, the
polar and isotropic regimes. The dynamical bias leads to renormalizing interactions in a controlled manner, which effectively changes
the transition threshold asD�

r → D�
rð1þ κÞ at leading order. As a result, one can stabilize either isotropic or polar states, respectively, for

κ < 0 and κ > 0, thus illustrating the ability to trigger or inhibit collective effects in nonequilibrium systems. Simulation details are in
Appendix A and movies in Ref. [73].
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T̃ ¼ ð1þ κÞT þOðκ2Þ: ð41Þ

Thus, by promoting a nonzero average for Eθ, aligning
interactions can be tuned in a controlled manner at first
order in κ. A higher-order bias leads to maximizing the
squared torque, as presented in Appendix C.
We test this prediction numerically using a direct

sampling of biased trajectories. We consider values of
fDr; μr; ρ0g above and below the threshold D�

r ¼ μrρ0=2,
where the system exhibits either isotropic or polar states in
the unbiased dynamics (κ ¼ 0), as shown in Fig. 7.
Specifically, when the original system is isotropic
(Dr > D�

r), we observe a transition to polar for κ > 0,
and, conversely, when it is polar (Dr < D�

r), a transition to
isotropic for κ < 0. This observation confirms our result
(41), where the bias amounts to changing the angular
mobility as μ̃r ¼ ð1þ κÞμr þOðκ2Þ for weak κ, so that the
linear instability is either triggered or suppressed by solely
tuning κ, all other parameters being held the same. Thus,
these results demonstrate how biasing the dynamics with an
appropriate observable leads to control of the emergence of
spontaneous organization, with potential interest for other
nonequilibrium dynamics.

IV. CONCLUSION

Developing techniques to characterize and control the
behavior of systems operating far from equilibrium remains
a central and outstanding problem. Despite the apparently
complex interplay between internal dissipation and emerg-
ing properties, we demonstrate that tracer diffusion and
density correlations can simply be connected to dissipation
in driven liquids. We also construct a mapping between
deterministic and active drives for a specific active matter
model, thus showing how our approach can potentially be
extended to a broad class of systems. Importantly, our
results open promising perspectives to evaluate dissipation
simply from the structure of the system. Inspired by recent
works [18,111], one could also introduce a map of
dissipation, directly related to the statistics of interaction
forces, to resolve spatially where energy is released in the
thermostat. Though the corresponding integrated map
would not cover the total dissipation, it would already
provide insightful information about locations of low and
high dissipation with respect to a constant background set
by the squared driving amplitude.
In practice, monitoring dissipation with a well-defined

parameter remains an open challenge for many-body
systems. To this end, biased ensembles enable one to
specify the statistics of dissipation by introducing an
additional control parameter, analogously to the change
from a microcanonical to a canonical ensemble in equi-
librium thermodynamics [38,50], which is done by select-
ing rare noise realizations which drive the system away
from typical behavior, without introducing any driving
force. Pioneering works were focused on favoring

dynamical heterogeneities, without affecting the structure,
of kinetically constrained models [39–43]. Yet, more recent
studies show the potential to also modify density correla-
tions in diffusive systems [48,49,112].
Using these large-deviation techniques, we put forward a

particular set of biased ensembles which allows one to
regulate the liquid structure in a controlled manner. The
explicit form of the bias is motivated by the relations
between dissipation and structure that we derive for driven
liquids. At leading order, any bias in this class simply leads
to introducing additional interactions in the dynamics.
Furthermore, a higher-order bias systematically constrains
the trajectories to favor the formation of clusters. Based on
minimal case studies, we sample the biased configurations,
using state-of-the-art numerics [46,63–68], to illustrate the
ability to stabilize specific structures and collective effects
in a controlled manner.
Since dynamical bias consists in favoring rare noise

fluctuations, the corresponding dynamics effectively
provides useful insights on how to promote atypical
configurations with an external drive. In practice, the
driving protocol should simply mimic the biased noise
realizations. This line of thought has already been
exploited for efficient sampling of the biased ensemble
[45,65,113,114], where control forces make rare events
become typical. Moreover, since our analytic framework
encompasses the case of a specific bias for each pair of
particle, it could potentially be regarded as a fruitful route
to promote the spontaneous self-assembly of complex
structures at the cost of energy dissipation. For instance,
inspired by recent works [115,116], one might consider
our approach to design energetic landscapes, in terms of
the pair-specific bias parameters, which selectively stabi-
lize some target molecules.
Overall, these results illustrate how specifying the

amount of energy dissipated by nonequilibrium forces
allows one to constrain the dynamics and structure of
driven liquids. This constraint paves the way towards
controlling the emerging properties of such systems by
tuning dissipation accurately. It remains to investigate
whether similar results can be obtained in more complex
systems which could, for instance, potentially include
anisotropic building blocks, such as driven chiral objects
or active liquid crystals [27,117,118].
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APPENDIX A: NUMERICAL SIMULATIONS

In Sec. II A, a custom code of molecular dynamics, based
on the finite time difference, is used to perform the
simulations in a two-dimensional box 102σ × 102σ with
periodic boundary conditions. The time step is δt ¼ 10−4,
and the initial condition is homogeneous. Parameter values
are ρ0 ¼ 0.7, T ¼ 0, γ ¼ 1, f ¼ 3 × 10−2, τ ¼ 103,
v0 ¼ 5, n ¼ 102, and σ ¼ 1.
In Secs. II B and II C, numerical simulations of the

dynamics (1) are performed using the LAMMPS simula-
tion package in a two-dimensional box 102σ × 102σ, where
σ is the particle diameter, with periodic boundary con-
ditions at average density ρ0 ¼ 0.45. Our custom code
actually implements overdamped Langevin equations of
motion with the finite time difference. It simply utilizes the
efficient force computation routines that are built as a part
of the molecular dynamics package. The system is first
relaxed for 103 conjugate gradient descent steps and later
equilibrated during 50τ. We evaluate average values over
ten independent trajectories with duration 150τ. The
density pair correlations are constructed using ten inde-
pendent trajectories, each with duration 50τ. We perform
error analysis from the independent simulations and obtain
negligible errors for all the data in Figs. 2–4. The time step
is 5 × 10−4, and the bin size for computing the pair
correlations is 0.01σ. We perform simulations at other
values of the time step f10−4; 10−5g and of the bin size
f5 × 10−3σ; 2 × 10−2σg to confirm that our calculations of
the α coefficients are well converged. Parameter values are
T ¼ 1, γ ¼ 102, v0 ¼ 1, and σ ¼ 1.
In Sec. III C, a custom code of molecular dynamics,

based on the finite time difference, is used to perform the
simulations in a two-dimensional box 10σ × 10σ with
periodic boundary conditions. We bias the pair potential
between eight blue particles and 16 red particles. To
sample the biased ensemble, we use the cloning algorithm
described in Appendix A in Ref. [65]. The time interval
for cloning is Δt ¼ 10δt, and the number of clones is
1600. The time step is δt ¼ 10−4, the initial relaxation
time is 104Δt, and the total simulation time is 106Δt.
Parameter values are T ¼ 1, γ ¼ 1, v0 ¼ 4 (Fig. 6),
and σ ¼ 1.

In Sec. III D, a custom code of molecular dynamics
based on the finite time difference is used to perform the
simulations. N ¼ 128 particles are simulated in a two-
dimensional box of size 4σ × 4σ with periodic boundary
conditions. To sample the biased ensemble, we use the
cloning algorithm described in Appendix A in Ref. [65].
The time interval for cloning is Δt ¼ 10δt, and the number
of clones is 200. The time step is δt ¼ 10−3, and the total
simulation time is 500Δt. Parameter values are V0 ¼ 2,
μr ¼ 2, ρ0 ¼ 8, and σ ¼ 1.

APPENDIX B: DISSIPATION AND DIFFUSION

This Appendix is devoted to the derivation of the
dissipation rate J and the diffusion coefficient D of a
driven tracer, as defined in Sec. II. We employ a perturba-
tive treatment at weak interactions, originally introduced
for a particle driven at constant force in Refs. [52,53]. To
this aim, the tracer-bath interaction potential v is scaled by a
small dimensionless parameter h ≪ 1 in what follows.
Besides, we focus on the regime of dilute tracers, so that
interactions among them, either direct or mediated by the
bath, can be safely neglected.
The dynamic action associated with the tracer dynamics

(11) and (12) follows from standard path integral methods
[99,100]. It can be separated into contributions from the
free tracer motion and from interactions, respectively,
denoted by A0 and Aint:

A0 ¼
Z

r̄0 · ½ið_r0 − Fd=γÞ þD0r̄0�dt;

Aint ¼
h2

γ

Z
dq

ð2πÞd jqj
2jvðqÞj2

Z
∞

−∞
ds

Z
s

−∞
du

× e−DGjqj2KðqÞðs−uÞþiq·½r0ðsÞ−r0ðuÞ�

× r̄0ðsÞ ·
�
r̄0ðuÞ
γKðqÞ −

q
γG

�
; ðB1Þ

where D0 ¼ T=γ is the tracer diffusion coefficient in the
absence of interactions (v ¼ 0) and r̄0 is the process
conjugated with the tracer position r0. For weak inter-
actions h ≪ 1, any average value can be then expanded in
terms of h as h·i ¼ h·i0 − h2hAint·i0 þOðh4Þ, where h·i0 is
the average taken with respect to A0 only. As a result,
determining the first correction from interactions in any
observable amounts to computing the corresponding aver-
age hAint·i0.
Considering the dissipation rate per particle J =N ¼

h_r0i · Fd, the leading order is h_r0i0 · Fd ¼ jFdj2=γ ¼ f2=γ,
and the first correction reads −h2hAint _r0i0 · Fd. Given
the explicit form of Aint in Eq. (B1), the correlations of
interest are
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h_r0ðtÞ½q · r̄0ðsÞ�eiq·½r0ðsÞ−r0ðuÞ�i0
¼ iqδðt − sÞe−D0jqj2ðt−uÞþðiq=γÞ·

R
t

u
FdðwÞdw;

h_r0ðtÞ½r̄0ðuÞ · r̄0ðsÞ�eiq·½r0ðsÞ−r0ðuÞ�i0
¼ −iqδðt − sÞe−D0jqj2ðt−uÞþðiq=γÞ·

R
t

u
FdðwÞdw; ðB2Þ

where we use that the tracer statistics is Gaussian in the
absence of interactions, following Refs. [52,53]. From this
result, we get

J −f2=γ¼Nh2

dγ2

Z
dq

ð2πÞd iq ·FdðtÞjqj2jvðqÞj2
D0þDGKðqÞ

D0KðqÞ
×
Z

t

−∞
due−jqj

2½D0þDGKðqÞ�ðt−uÞþðiq=γÞ·
R

t

u
FdðwÞdw

þOðh4Þ; ðB3Þ

where we use γG ¼ γ=ρ0 and DG ¼ ρ0D0. Expanding at
small f, we deduce

J −f2=γ¼−
Nh2

dγ3

Z
dq

ð2πÞd jqj
4jvðqÞj2D0þDGKðqÞ

D0KðqÞ
×
Z

t

−∞
due−jqj2½D0þDGKðqÞ�ðt−uÞ

Z
t

u
dwFdðtÞ ·FdðwÞ

þOðh4;f4Þ: ðB4Þ

Substituting the explicit expression of the deterministic
drive (2) in Eq. (B4) and then integrating over u and w, we
obtain

J −f2=γ¼−
NðhfÞ2
dγ3

Z
dq

ð2πÞd
jqj4jvðqÞj2

jqj4½D0þDGKðqÞ�2þω2

×
D0þDGKðqÞ

D0KðqÞ
þOðh4;f4Þ: ðB5Þ

For the case of active drive with correlations (3), we exploit
the equivalence with a disordered drive detailed in
Sec. II A. Substituting the explicit drive (4) in Eq. (B4)
and then averaging over disorder in the limit of many
oscillators (n ≫ 1), we get

J −f2=γ¼−
NðhfÞ2
dγ3

Z
dqdω0

ð2πÞdþ1

jqj4jvðqÞj2ϕðω0Þ
jqj4½D0þDGKðqÞ�2þðω0Þ2

×
D0þDGKðqÞ

D0KðqÞ
þOðh4;f4Þ; ðB6Þ

where ϕðω0Þ ¼ 2τ=½1þ ðω0τÞ2�, yielding

J −f2=γ¼−
NτðhfÞ2

dγ3

Z
dq

ð2πÞd
jqj2jvðqÞj2
D0KðqÞ

×
1

τjqj2½D0þDGKðqÞ�þ1
þOðh4;f4Þ: ðB7Þ

The asymptotic results for the rate of work _w ¼ f2=γ − J ,
presented in Sec. II B for both deterministic and active
drives, follow directly.
We now turn to deriving the diffusion coefficient D. It is

defined in terms of the mean-squared displacement (MSD)
hΔr20ðtÞi¼h½hr0ðtÞi−r0ðtÞ�2i as D ¼ limt→∞hΔr20ðtÞi=2dt.
At leading order, the MSD reads hΔr20ðtÞi0 ¼ 2dD0t. To
obtain the first order, we need to compute the following
correlations:

hΔr20ðtÞ½q · r̄0ðsÞ�eiq·½r0ðsÞ−r0ðuÞ�i0 ¼ −4ðD0=γÞjqj2ðs − uÞΘðt − sÞ e−D0jqj2ðt−uÞþðiq=γÞ·
R

t

u
FdðwÞdw;

hΔr20ðtÞ½r̄0ðuÞ · r̄0ðsÞ�eiq·½r0ðsÞ−r0ðuÞ�i0 ¼ ð2=γ2ÞΘðt − sÞ½2D0jqj2ðs − uÞ − 1� e−D0jqj2ðt−uÞþðiq=γÞ·
R

t

u
FdðwÞdw; ðB8Þ

where we use again that A0 is Gaussian in terms of r̄0, yielding

hΔr20ðtÞi − 2dD0t ¼
2h2

γ2

Z
dq

ð2πÞd
jqj2jvðqÞj2

KðqÞ
Z

t

−∞
ds

Z
s

−∞
duf2jqj2½D0 þDGKðqÞ�ðs − uÞ − 1g

× e−jqj
2½D0þDGKðqÞ�ðs−uÞþðiq=γÞ·

R
s

u
FdðwÞdw þOðh4Þ: ðB9Þ

Expanding at small f, we get

hΔr20ðtÞi − 2dDeqt ¼ −
2h2

γ4

Z
dq

ð2πÞd
jqj4jvðqÞj2

KðqÞ
Z

t

−∞
ds

Z
s

−∞
duf2jqj2½D0 þDGKðqÞ�ðs − uÞ − 1g

× e−jqj2½D0þDGKðqÞ�ðs−uÞ
Z

s

u
dw1dw2Fdðw1Þ · Fdðw2Þ þOðh4; f4Þ; ðB10Þ
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where Deq refers to the diffusion coefficient in the absence
of driving force (f ¼ 0). For the deterministic drive (2), the
explicit time integrations give

D −Deq ¼
ðhfÞ2
dγ4

Z
dq

ð2πÞd
jqj2jvðqÞj2

KðqÞ½D0 þDGKðqÞ�

×
5jqj4½D0 þDGKðqÞ�2 þ ω2

fjqj4½D0 þDGKðqÞ�2 þ ω2g2
þOðh4; f4Þ: ðB11Þ

Using the mapping in Sec. II A for the case of active drive
with correlations (3), we deduce

D −Deq ¼
ðhfÞ2
dγ4

Z
dqdω0

ð2πÞdþ1

jqj2jvðqÞj2ϕðω0Þ
KðqÞ½D0 þDGKðqÞ�

×
5jqj4½D0 þDGKðqÞ�2 þ ðω0Þ2
fjqj4½D0 þDGKðqÞ�2 þ ðω0Þ2g2

þOðh4; f4Þ; ðB12Þ
where again ϕðω0Þ ¼ 2τ=½1þ ðω0τÞ2�, yielding

D −Deq ¼
τðhfÞ2
dγ4

Z
dq

ð2πÞd
jvðqÞj2

KðqÞ½D0 þDGKðqÞ�2

×
5τjqj2½D0 þDGKðqÞ� þ 3

fτjqj2½D0 þDGKðqÞ� þ 1g2
þOðh4; f4Þ: ðB13Þ

Finally, we obtain the expressions in the asymptotic
regimes, as reported in Sec. II B for both deterministic
and active drives.

APPENDIX C: EQUIVALENCE OF BIASED
ENSEMBLES

In this Appendix, we demonstrate the equivalence
between specific dynamical biased ensembles. First, we
consider ensembles related to the equilibrium dynamics
(28). Ensemble (a) corresponds to biasing with the factor
exp½Pi;j κij

R
t
0 EijðsÞds� in the path probability, where

Eij ¼
1

γT

X
k

½T∇k −∇kV� ·∇kAðri − rjÞ: ðC1Þ

Ensemble (b) is associated with the first-order auxiliary
dynamics, whose potential reads V þ 2

P
i;j κijAðri − rjÞ,

biased with exp½R t
0 ε

0ðsÞds�, where

ε0 ¼ 1

γT

X
k

�X
i;j

κij∇kA½riðsÞ − rjðsÞ�
�
2

: ðC2Þ

Obtaining the equivalence between (a) and (b) amounts to
showing that their path probabilities are similar. The

corresponding dynamic actions, denoted by AðσÞðtÞ ¼P
k

R
t
0 A

ðσÞ
k ðsÞds for σ ¼ fa; bg, are given by

AðaÞ
k ¼ 1

4γT
½γ_rk þ∇kV�2 −

1

2γ
∇2

kV

−
1

γT

X
i;j

κij½T∇k −∇kV� ·∇kAðri − rjÞ ðC3Þ

and

AðbÞ
k ¼ 1

4γT

�
γ_rk þ∇kV þ 2

X
i;j

κij∇kAðri − rjÞ
�
2

−
1

2γ
∇2

k

�
V þ 2

X
i;j

κijAðri − rjÞ
�

−
1

γT

�X
i;j

κij∇kAðri − rjÞ
�
2

: ðC4Þ

Expanding AðbÞ
k in Eq. (C4) and comparing with AðbÞ

k in
Eq. (C3), it appears that AðaÞ and AðbÞ are indeed equal up
to a boundary term proportional to

P
i;j κijfAð½riðtÞ −

rjðtÞ� − A½rið0Þ − rjð0Þ�g which can be neglected at large
t: This result establishes the equivalence between ensem-
bles (a) and (b).
We now turn to demonstrate the equivalence between

two ensembles related to the Vicsek-like dynamics (39).
Ensemble (c) is biased with the factor exp½κ R t

0 EθðsÞds�,
where Eθ is defined in Eq. (40). Ensemble (d) corresponds
to the first-order auxiliary dynamics, with the torque given
by ð1þ κÞT , biased with exp½R t

0 εθðsÞds�, where

εθ¼
ðκμrÞ2
4Dr

X
i;j;k

T ðθi−θk;ri−rkÞT ðθi−θj;ri−rjÞ: ðC5Þ

The dynamic actions for each ensemble, denoted by

BðσÞðtÞ ¼ P
i

R
t
0 B

ðσÞ
i ðsÞds for σ ¼ fc; dg, are given by

BðcÞ
i ¼ 1

4Dr

�
_θi − μr

X
j

T ðθi − θj; ri − rjÞ
�
2

þ μr
2

∂
∂θi

X
j

T ðθi − θj; ri − rjÞ

þ κμr
2

X
j

� ∂
∂θi þ

μr
Dr

X
k

T ðθi − θk; ri − rkÞ
�
T ðθi − θj; ri − rjÞ ðC6Þ
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and

BðdÞ
i ¼ 1

4Dr

�
_θi − ð1þ κÞμr

X
j

T ðθi − θj; ri − rjÞ
�
2

þ ð1þ κÞμr
2

∂
∂θi

X
j

T ðθi − θj; ri − rjÞ

−
ðκμrÞ2
4Dr

X
j;k

T ðθi − θk; ri − rkÞT ðθi − θj; ri − rjÞ: ðC7Þ

Expanding BðdÞ
i in Eq. (C6) and comparing with BðcÞ

i in
Eq. (C7), it appears that BðcÞ and BðdÞ differ only by a term
proportional to

P
i;j

_θiT ðθi − θj; ri − rjÞ which can safely
be neglected at large t, thus proving the equivalence
between ensembles (c) and (d).
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