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Odd materials feature antisymmetric response to perturbations. This anomalous property can stem from the
nonequilibrium activity of their components, which is sustained by an external energy supply. These materials
open the door to designing innovative engines which extract work by applying cyclic deformations, without
any equivalent in equilibrium. Here, we reveal that the efficiency of such energy conversion, from local activity
to macroscopic work, can be arbitrarily close to unity when the cycles of deformation are properly designed.
We illustrate these principles in some canonical viscoelastic materials, which leads us to identify strategies for
optimizing power and efficiency according to material properties and to delineate guidelines for the design of
more complex odd engines.
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The aim of engine design is not only practical, but also
conceptual: Studying thermal engines was pivotal for the de-
velopment of equilibrium thermodynamics [1]. The design of
minimal cycles, whose performances can be computed ex-
actly, has led to recipes that optimize more complex engines in
terms of universal observables (i.e., power and efficiency). In-
deed, the seminal Carnot cycle, which places a simple bound
on the efficiency of any thermal engine [2], still serves today
as a testbed to guide challenges in modern research, such as
the design of micrometer-scale engines [3–6].

Materials which evade equilibrium constraints offer op-
portunities to devise innovative engines with unprecedented
performances. Active matter encompasses nonequilibrium
systems where every unit has internal machinery powering its
motion [7–9]. Active systems are either living (e.g., bacterial
swarms [10,11]), social (e.g., animal groups [12]), or synthetic
(e.g., catalytic colloids in fuel bath [13,14]). Each unit can be
regarded as a microscopic engine converting the energy fuel
stored in the environment (e.g., nutrients feeding bacteria) into
autonomous motion. A natural question, which has already
received extensive attention [15–25], is how to exploit indi-
vidual self-propulsion to design macroscopic active engines:
How to harvest particle-based, disordered motion to produce
macroscopic, sustained motion?

In most active systems, the metabolic rate characterizing
microscopic fuel conversion is constant, and active units are
always self-propelling. In such liquid materials, the energy
stemming from fuel conversion sustains self-propulsion and
becomes dissipated in the surrounding thermostat, with neg-
ligible contribution to macroscopic work extraction. As a
consequence, active fluids naturally yield engines with very
low efficiency [22]. However, in principle, units need not
always be actively moving, instead their activity may be mod-
ulated in proportion to external perturbations.

In search for materials with such adaptive units, the mo-
tivation is to design protocols by minimizing the individual

dissipation and maximizing the macroscopic work. Impor-
tantly, this approach focuses on optimizing the macroscopic
energy conversion irrespective of the details of microscopic
fuel conversion. We ask: How does one properly interface
with active constituents given minimal assumptions on their
individual dynamics?

Odd materials are novel nonequilibrium systems with an-
tisymmetric relations between stress and strain; see Fig. 1.
Their components can either be subject to constant torques
(e.g., colloids rotating with an external magnetic field [26,27])
or trigger active internal forces under external perturbations
(e.g., metabeam made of piezoelectric patches with electronic
feedback [28]). These materials then acquire some anoma-
lous mechanical properties: Odd viscosity (equivalently, Hall
viscosity [29,30]) has been reported in models of spinning
particles [31,32]; odd elasticity has been studied in models
of elastic networks, whose bonds yield local transverse forces
upon compression and/or extension [33,34]. In both cases, the
response nonreciprocally couples different changes in shape,
which can lead, for instance, to compression as a result of
applied torque [30,33].

For our purpose, odd elasticity stands out as the key in-
gredient in designing efficient engines. Indeed, this response
typically arises in assemblies of transducers, acting as both
sensors and actuators, which adapt their activity to external
cues [28,33,34]. Such materials have been used to design
nonequilibrium engines with slow cyclic deformations [33].
The engines exploit the fact that the work now depends on
the whole path of deformations (i.e., not only on initial and
final points), in contrast to thermal engines [1]. A remaining
challenge is to explore whether these engines indeed fulfill
the promise of efficient and powerful energy conversion from
local activity, leading to macroscopic work extraction.

In this paper, we examine how to optimize the perfor-
mances of odd engines using a continuum theory of odd
materials. We address solids that are well modeled by a linear
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FIG. 1. Schematic of odd engines at microscopic and macro-
scopic scales. (a) A ball-and-spring microscopic model. The
restoring and dissipative forces on the spring are captured by the
typical (even) part of the complex modulus G∗

e . Analogously, the
transverse (odd) forces are captured by the odd complex modulus
G∗

o. The sign of the odd and even forces depends on whether the
spring is extended (middle) or compressed (bottom). (b) Continuum
descriptions of odd engines. For a macroscopic material composed of
springs in panel (a), G∗

e describes the viscoelastic response of passive
materials, whereas the odd response G∗

o couples, for example, a shear
stress to a different shear strain.

viscoelastic response: The elasticity and viscosity tensors both
depend on the frequencies of applied perturbation. In general,
we show that (i) if odd elasticity is strong at low frequencies,
then slow cycles are always advantageous, in which case there
is a tradeoff between power and efficiency analogously to
thermal engines, whereas (ii) if the elasticity dies out at low
frequencies, then fast cycles are advantageous. These cases
are exemplified by canonical models imported from materials
science, such as the Kelvin-Voigt solid, the standard linear
solid, and the power-law solid. For each model, we explore
how the cycle needs to be tailored to material specificities to
optimize power and/or efficiency. Overall, our results provide
intuition for how to best exploit odd properties, and illustrate
some concrete guidelines for the design of more complex
engines.

We consider a linear viscoelastic material [35–37], whose
constitutive relation between stress σ and strain u (or, more
generally, displacement gradient) is given in the Fourier do-
main in terms of the dynamic modulus G∗:

σ̃i j (ω) = G∗
i jkl (ω) ũkl (ω), (1)

where ω is the frequency, and we use implicit summation over
repeated indices throughout. The storage (G′) and loss (G′′)
moduli correspond, respectively, to the real and imaginary
parts of G∗. The (novel, antisymmetric) odd parts Go and the
(standard, symmetric) even parts Ge of each modulus obey

Go,i jkl = −Go,kli j and Ge,i jkl = Ge,kli j ; see Fig. 1. For a pro-
tocol varying the strain u periodically, the work W produced
during a cycle of period τ reads

W = −
∫ τ

0
σi j (t )u̇i j (t )dt . (2)

Within our convention, work is extracted from the material
when W > 0. Combining Eqs. (1) and (2), the work can be
written in terms of the strain Fourier coefficients ûn as

W = 4π
∑
n>0

n û−n,i j ûn,kl [iG′
o,i jlk (ωn) − G′′

e,i jlk (ωn)], (3)

where ωn = 2πn/τ , and we have used the fact that G′ is even
(and G′′ is odd) with respect to ω. The power is the work per
cycle period, P = W/τ , and the quasistatic work Wqs follows
from Eq. (3) by taking the limit of large τ (i.e., ωn → 0).
The dissipated energy D is defined as the part of the work
associated with the loss modulus:

D = 4π
∑
n>0

n û−n,i j ûn,kl G′′
e,i jlk (ωn), (4)

and, inspired by previous works on monothermal proto-
cols [25,38], we use the following measure of efficiency:

E = W
W + D . (5)

Interestingly, energy-conserving features (i.e., odd viscos-
ity and even elasticity) affect neither efficiency nor power.
Since D must be positive to ensure material stability, E
lies in the range (−∞, 1]. For strictly dissipative materials
(W +D= 0), any cycle has E = −∞, whereas for other ma-
terials, cycles can support E close to 1 whenever dissipation
becomes negligible (W � D). Note that our definition of effi-
ciency addresses how the energy input due to odd features can
be transduced into extracted work, without taking into account
the underlying microscopic mechanisms which sustain this
energy input. When dissipation arises from collisions with
molecules of the surrounding thermostat, D is the heat ab-
sorbed by the thermostat [39,40]. In other contexts, such as in
granular materials with nonelastic collisions between system
components [41], or in epithelial tissues with dry friction due
to the substrate [42,43], D can be distinct from heat.

With the definitions in Eqs. (3)–(5), the sum of work and
dissipated energy, W + D, does not reduce to the bound-
ary term [σi jui j]τ0, as would be the case in the absence of
any energy source [40]. Instead, the sum W + D is gen-
erally nonzero, even if the protocol is periodic, due to the
odd storage modulus G′

o. This illustrates that some energy
must be supplied externally to the material [39] to sustain
its odd properties [33]. This situation is reminiscent of en-
gines composed of self-propelled particles, where the energy
balance W + D includes explicitly the cost of microscopic
self-propulsion [25]. Yet, in contrast with self-propelled par-
ticles, some odd materials behave as static solids, which do
not dissipate any energy when they are at rest. As we shall
see, this distinction can lead to nominal increases in E , when
the cycle is appropriately designed, with respect to previous
active engines [22,25].

In what follows, for simplicity, we consider cases where
G∗ reduces to a matrix in the two-dimensional strain
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FIG. 2. Performances of odd materials under various protocols. (a), (b) Three cyclic protocols in strain space {ua, ub} with same quasistatic
work (Wqs = 2πK

∑
nna2

n): (1) circular protocol, an = δn,1, (2) noncircular protocol, an = (1/2)(δn,1 + δn,3), and (3) noncircular protocol,
an = (1/5)(3

√
2δn,1 + δn,7), see Eq. (7). (c)–(h) Power and efficiency, respectively, P and E , as functions of the cycle time τ , where τr is a

relaxation time scale and P0 = Wqs/τr is a reference power. We compare these metrics {P, E} for three materials subject to the protocols
in panels (a, b). The material mechanics is characterized by the odd storage modulus g′ and even loss modulus g′′ [see Eq. (6)]: (c), (d)
odd Kelvin-Voigt (KV) solid [Eq. (9)], (e), (f) odd standard linear (SL) solid [Eq. (11)], and (g, h) odd power-law (PL) solid [Eq. (12)].
The insets display some schematic representations of each material in terms of even/odd dampers and springs. (c), (d) KV solids exhibit a
tradeoff between power (maximum at intermediate τ ) and efficiency (maximum at large τ ). The efficiency at maximum power is always 1/2
independently of the protocol details, see dotted lines. Noncircular protocols systematically reduce both the efficiency at all times and the
maximum power. (e), (f) SL solids have diverging power at small τ , and maximum efficiency at both small and large τ . The engine cannot
extract work in an intermediate regime of τ (where P < 0 and E < 0) for circular protocols (blue line), yet it can extract work at all τ for some
noncircular protocols (red line). (g, h) PL solids have either diverging power at small τ (when α < 1/4), or maximum power at intermediate τ

(when α > 1/4). The efficiency is always maximum at large τ . Parameters: K = 1, τr = 1, λ = 0.1.

subspace {ua, ub}:

G∗ =
[

ig′′ g′
−g′ ig′′

]
+ G′

e + iG′′
o, (6)

where g′ embodies the odd components of the storage mod-
ulus, and g′′ the even components of the loss modulus.
Although minimal, this choice captures the essential ingredi-
ents at play in odd materials. Decomposing the strain protocol
as [see Figs. 2(a) and 2(b)]

[ua, ub] =
∑
n>0

an [cos(ωnt ), sin(ωnt )], (7)

we deduce power and efficiency from Eqs. (3)–(5) and (7):

P =
∑
n>0

ωna2
n(g′ − g′′)(ωn), E = P∑

n ωna2
ng′(ωn)

. (8)

Work can be extracted (P > 0) only if the material behaves
as an odd solid (g′ > g′′, i.e., storage greater than loss) in
a finite range of frequencies. This criterion allows one to
rule out some systems, such as the chiral fluid described in
Ref. [41], as unfit for work extraction. For cycles with a
single harmonic (an ∝ δn,α), the corresponding frequency ωα

must satisfy g′(ωα ) > g′′(ωα ), which defines the appropriate
frequency range for work extraction. The efficiency reduces
to 1 − g′′(ωα )/g′(ωα ) and can get arbitrary close to unity by
increasing the ratio of odd storage to even loss moduli. In gen-
eral, combining several harmonics can potentially help ensure
work extraction and increase efficiency at any cycle time τ , by
selecting the values an according to material parameters.

Equipped with the expressions in Eq. (8), we now proceed
by analyzing some familiar types of rheology. First, we ad-
dress the case of odd Kelvin-Voigt (KV) solids:

g′(ω) = K, g′′(ω) = iωη, (9)

where K is the odd elastic modulus, and η is the viscosity [see
inset of Fig. 2(c)]. These materials behave as even viscous
fluids at short times and odd elastic solids at long times.
Such a material could be constructed from an elastic network
of active bonds embedded in a viscous fluid, with cycles in
the space of shear strains [33,44]. The associated power and
efficiency have simple expressions:

E = τP
Wqs

= 1 − τ̄

τ
, Wqs = 2K

∫∫
duadub. (10)

The engine extracts work at all times larger than τ̄ , where τ̄

depends on an and τr = η/K . The power has a nonmonotonic
behavior with peak value at 2τ̄ and vanishes at long times,
see Fig. 2(c), analogously to thermal engines [45,46] and
monothermal cyclic engines with self-propelled particles [22].
Interestingly, the maximum power P̄ is proportional to the
ratio of the squared area in strain space {ua, ub}, namely,
(
∫∫

duadub)2, over
∫ 1

0 (u̇2
a + u̇2

b)ds, where u̇a = dua/ds. For
a given Wqs, optimizing P̄ then requires minimizing the
perimeter at fixed area: This is achieved for a circular protocol.
Adding any higher harmonics systematically reduces both ef-
ficiency E for all times and maximum power P̄ , see Figs. 2(c)
and 2(d). If ua and ub are associated with different viscosities,
respectively, ηa and ηb (e.g., for rotation and dilation [33]),
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then the optimal protocol now describes an ellipse: [ua, ub] ∝
[c cos(ω1t ), c−1 sin(ω1t )], where c = (ηb/ηa)1/4. In addition,
all these results still hold for nonlinear elasticity, namely,
when Wqs = 2

∫∫
K (ua, ub)duadub, as long as the even loss

modulus remains purely viscous.
The efficiency of KV solids increases monotonically with

the cycle time and converges to unity [see Fig. 2(d)], in con-
trast with both cyclic active engines, where E vanishes at long
times [22], and thermal engines, where E is bounded by the
Carnot efficiency [2]. This illustrates how odd engines typi-
cally outperform other engines, either thermal or active, when
they behave purely as odd elastic solids (at long times for KV
solids). As for thermal engines [45,46], there is a tradeoff
in KV solids between achieving either maximal power (at
intermediate times) or high efficiency (at long times). Surpris-
ingly, the efficiency at maximum power is universal for KV
solids and always equals 1/2 independently of both material
properties (K, η) and cycle details (an).

In search of odd materials achieving simultaneously maxi-
mal power and high efficiency, we now address odd standard
linear (SL) solids. For simplicity, we consider that g′ and g′′
are related by [see inset of Fig. 2(e)]

g′(ω) + ig′′(ω) = K
1 + iωτr

1 + iλωτr
, (11)

where τr is a relaxation time, and the dimensionless parameter
λ obeys 0 < λ < 1. The odd SL solids behave as odd elastic
solids at both short and long times. In general, consider-
ing a schematic representation of a material with dampers
and springs, each one being either odd or even, g′ and g′′
can be expressed in terms of separate viscosities and elastic
moduli [44]. SL solids with even moduli correspond, for in-
stance, to the mechanics of vertex models [47], which describe
epithelial tissues as a dense assembly of self-propelled parti-
cles [42,43]. Odd components might arise in such a model
when considering self-propelled particles with chirality [48].

The quasistatic work is analogous to that of odd KV solids
Eq. (10); P and E directly follow from Eqs. (8) and (11);
see our footnote, Ref. [49]. For λ > 3 − 2

√
2, we get from

Eq. (11) that g′ > g′′ at all frequencies, so that the power is
always positive [see Eq. (8)]: The cycle extracts work for
any cycle time τ . In contrast, for λ < 3 − 2

√
2, considering

protocols with a single harmonic leads to an intermediate
range of τ without work extraction. Yet, combining several
harmonics can still yield work extraction at all times; see
Figs. 2(e) and 2(f). For any λ, the power vanishes at long
times, and it diverges as τ−1 at short times toward large
positive values. The efficiency converges to unity at short and
long times, since odd SL solids behave as odd elastic solids
in these regimes. Therefore, in contrast with odd KV solids,
the engine can now produce high P with E arbitrary close to
unity, when operated at very short times: There is no longer
any tradeoff between power and efficiency. Interestingly, a
similar behavior is observed for materials which act as odd
solids at short times, without necessarily being solids at long
times, such as odd Maxwell liquids [44].

As a final illustration, we consider odd power-law (PL)
solids, which combine features of KV and SL solids:

g′(ω) + ig′′(ω) = K[1 + (iωτr )α], (12)

where 0 < α < 1/2. Such materials behave as odd elastic
solids at long times, and reduce to odd KV solids when
α = 1/2. When α < 1/4, although these materials are not
purely odd elastic solids at short times, the storage modulus
is still larger than the loss. PL mechanics (without any odd
component) are observed when probing the intracellular envi-
ronment of some living systems with microrheology [50–53].
In general, power-law behavior emerges when considering a
large assembly of parallel dampers and springs [54], see inset
of Fig. 2(g), so that the power-law relaxation is approximated
by a series of exponential relaxations, known as the Prony
series [55].

The quasistatic work is the same as for odd KV and SL
solids, see Eq. (10). We straightforwardly deduce P and E
from Eqs. (8) and (12); see our footnote, Ref. [56]. The ex-
ponent α controls the transition between when the PL solid
behaves like an odd KV solid (at large α) and when it behaves
like an odd SL solid (at small α), see Figs. 2(g) and 2(h).
For α < 1/4, the mechanics in Eq. (12) is such that g′ > g′′
for all ω, yielding work extraction at any cycle time τ , and
the power diverges at short times as for odd SL solids. For
α > 1/4, work is extracted at times larger than a threshold
value, which depends on the parameters τr , an, and α, and
the power has a nonmonotonic behavior analogous to odd
KV solids. In both cases, E is monotonic and converges to
unity at large times, as for odd KV solids, yet the efficiency at
maximum power for α > 1/4 is no longer universal, in con-
trast with odd KV solids. Although engines with mechanics in
Eq. (12) cannot reach simultaneously both high power P and
efficiency E close to unity, this combination may be achieved
by considering independent PL behaviors for g′ and g′′.

In this paper, we put forward a systematic framework to
predict and optimize the power and efficiency of odd engines.
We consider a series of canonical odd materials and compare
their performances to illustrate some generic features. Thus,
we reveal that the efficiency gets arbitrarily close to unity
when materials behave as odd elastic solids. The crucial differ-
ence compared to cyclic engines made of dilute self-propelled
particles, whose efficiency is very low [22], is that solids do
not dissipate energy at rest. Consequently, operating the cycle
slowly is always a good strategy for efficient work extraction
when the materials behave as odd static solids. Since the
power vanishes at long times, there is typically a tradeoff
between efficiency and power, which is reminiscent of thermal
engines [45,46], although it can be circumvented if materials
behave as odd solids at short times.

Importantly, our efficiency does not account for any dis-
sipation due to the underlying active components that give
rise to odd elasticity, which would reduce the overall effi-
ciency. For instance, the transverse forces of active bonds in
elastic networks can stem from internal propellers, activated
under compression/extension [33]. Interestingly, optimizing
the conversion of some energy resource (e.g., local bat-
tery) into odd elasticity is an issue separate from the engine
optimization addressed here. In that respect, our results al-
ready provide some insightful perspectives on how to best
convert odd elasticity into useful work. Our framework is
directly relevant to guide the design of future odd materi-
als, with a view to extracting work at maximum power and
efficiency.
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