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Quantifying dissipation in flocking dynamics: When tracking internal states matters
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Aligning self-propelled particles undergo a nonequilibrium flocking transition from apolar to polar phases
as their interactions become stronger. We propose a thermodynamically consistent lattice model, in which the
internal state of the particles biases their diffusion, to capture such a transition. Changes of internal states and
jumps between lattice sites obey local detailed balance with respect to the same interaction energy. We unveil a
crossover between two regimes: for weak interactions, the dissipation is maximal, and partial inference (namely,
based on discarding the dynamics of internal states) leads to a severe underestimation; for strong interactions,
the dissipation is reduced, and partial inference captures most of the dissipation. Finally, we reveal that the
macroscopic dissipation, evaluated at the hydrodynamic level, coincides with the microscopic dissipation upon
coarsegraining. We argue that this correspondence stems from a generic mapping of active lattice models with
local detailed balance into a specific class of nonideal reaction-diffusion systems.
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I. INTRODUCTION

Active matter is a class of nonequilibrium systems where
each component individually consumes energy to drive its
directed motion [1–3]. It encompasses systems made of either
synthetic [4,5] or living [6] self-propelled units. Interactions
between active units can lead to collective dynamics without
any equivalent in thermal equilibrium, such as the flock-
ing transition to a collective directed motion [7–9], and the
motility-induced phase separation (MIPS) of purely repulsive
particles [10].

Recently, several works have strived to quantify the depar-
ture from equilibrium in models of active matter [11,12]. The
motivation is mainly twofold. First, one would like to identify
some asymptotic regimes where the dynamics reduces to equi-
librium, from which perturbative results can be obtained for
the stationary distributions [13,14] and the irreversibility mea-
sures [15–18]. Second, one may want to estimate the energy
dissipated by the system, as it provides a natural definition of
the energy cost required to sustain a given collective phase.
Evaluating such a cost is the starting point of any energetic
optimization, should it concern either the design of engines
[19,20] or more generally the control of external perturbations
[21,22]. An important challenge is to formulate and study
minimal models which can guide experimental efforts to ex-
amine the relations between dissipation and nonequilibrium
dynamical patterns [23,24].

Unambiguously estimating dissipation in active matter is
nontrivial. Indeed, active systems feature many degrees of
freedom subject to nonequilibrium driving, only a small frac-
tion of which is typically accessible in experiments [24].
Therefore, most active models adopt an effective represen-
tation of the dynamics, focusing only on a subset of the
phase space (e.g., position and orientation of active colloids)

and deliberately discarding some underlying processes (e.g.,
chemical reactions at the colloidal surface). While this stand-
point captures the emerging collective phases in many cases
[1–3], it overlooks the dissipation of the discarded processes,
which can be a large contribution to the total energy cost.

Some models have proposed a refined description of ac-
tive matter, either at particle [20,25–32] or hydrodynamic
[33] levels, by describing its coupling to external reservoirs
(Fig. 1). Assuming that the reservoirs are at equilibrium,
such a picture is thermodynamically consistent as it explicitly
resolves all nonequilibrium degrees of freedom [34–36]. In
that respect, active systems amount to passive systems sub-
ject to an external drive. For chemically powered activity,

FIG. 1. Self-propelled particles (+, −) follow a biased diffusion
towards right (blue arrows) and left (red arrows), respectively. Each
particle can switch its internal state (green arrows). Local detailed
balance enforces that the transition rates are constrained by the
energy difference �E between configurations. The temperature T
stems from the surrounding thermostat. The chemical potential dif-
ference �μ is fixed by chemostats, and maintains the dynamics
arbitrarily far from equilibrium.
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the drive is typically the difference between the chemical
potentials of reactants and products which fuel the individual
self-propulsion. Even when the chemical drive is uniform in
space, the resulting driving force need not be, in contrast with
other driven systems (e.g., a copper wire subject to an electric
field).

While some thermodynamically consistent pictures of
MIPS have already been proposed [30,37], existing models of
flocking [7–9] do not obey thermodynamically consistency.
For instance, the active Ising model (AIM) captures flocking
with minimal dynamical rules which can be simulated effi-
ciently [38,39]: particles of two types are driven in opposite
directions, while aligning with local neighbors (Fig. 1). This
model and its extensions [40–43] have served as a platform to
study various aspects of the flocking transition [44–46] and to
benchmark numerical algorithms [47,48]. Despite its success,
the AIM is unsuited for proper thermodynamic analysis, since
it does not obey local detailed balance [34–36,49]. In fact,
although the transitions between particle types are constrained
by energetic interactions in AIM, the transitions between sites
do not follow any energetic constraint.

In this paper, we introduce a thermodynamically consistent
version of the AIM. In Sec. II, we propose a minimal modifi-
cation of the original AIM [38] to obey local detailed balance
(Fig. 1) while capturing the three main phases: a homoge-
neous apolar phase, a coexistence between a polar band and an
apolar background, and a homogeneous polar phase. We then
evaluate the dissipation in each phase and compare it with two
inferred estimations: (i) the first one accounts for transitions
between states and between sites, and (ii) the second one only
accounts for the spatial dynamics, without resolving the parti-
cle internal states. The underestimation of dissipation in case
(ii) illustrates the limitations of any evaluation that discards
some relevant degrees of freedom. In Sec. III, we derive a
hydrodynamic description of the dynamics in the macroscopic
limit, and we demonstrate that the corresponding macroscopic
dissipation coincides with its microscopic counterpart. The
correspondence between microscopic and macroscopic dis-
sipation relies on a coarse-graining procedure which avoids
discarding any relevant contribution to dissipation.

Overall, our results lead to distinguishing two regimes: (i)
for weak interactions (namely, in the apolar phase), the dissi-
pation is maximal, and partial inference (based on discarding
the dynamics of internal states) underestimates dissipation,
whereas (ii) for strong interactions (namely, in the polar
phase), the dissipation is reduced, and accurately captured by
partial inference. Based on thermodynamic consistency, our
approach demonstrates how the dissipation of nonequilibrium
dynamics can be systematically quantified across scales in
various types of active systems, even beyond the case of
flocking.

II. LATTICE MODEL OF FLOCKING

We introduce the thermodynamically consistent dynamics
of our lattice model (Fig. 1), and demonstrate that the cor-
responding phase diagram reproduces the three main phases
of standard flocking models [7–9]. We quantify the entropy
production rate in all phases, and compare it with estimations
obtained from inference methods.

A. Thermodynamically consistent dynamics

We consider N particles with internal states (+,−), evolv-
ing on a two-dimensional square lattice of size n × n with
periodic boundary conditions. Each lattice site can accom-
modate an arbitrary number of particles. Particles undergo
transitions either between internal states or between lattice
sites following a Markov jump process (Fig. 1).

Denoting by pi, j and mi, j the populations of + and −
particles at the site (i, j), the state of the system is given
by α = (p1,1, m1,1, . . . , pn,n, mn,n). The dynamics of the state
probability P (α, t ) reads

∂

∂t
P (α, t ) =

∑
α′

[Wα,α′P (α′, t ) − Wα′,αP (α, t )], (1)

where Wα,α′ denotes the rate of transition from α′ to α.
Inspired by the original AIM [38], we implement aligning
interactions as

E = −1

2

∑
i, j

[
ε

P2
i, j

ρi, j
+ ε0

Pi, j√
ρi, j

(
Pi+1, j√
ρi+1, j

+ Pi, j+1√
ρi, j+1

)]
,

(2)

where the local density ρi, j and polarization Pi, j read

ρi, j = pi, j + mi, j, Pi, j = pi, j − mi, j, (3)

and (ε, ε0) > 0 denote the interaction strengths. For a config-
uration where a given site (i, j) does not contain any particles,
both ρi, j and Pi, j vanish, so there is no contribution from this
site to the total energy E [Eq. (2)]. The functional depen-
dence of the rates Wα,α′ on the energy E differs depending
on whether the transition occurs between internal states or
between lattice sites (Fig. 1).

On a given lattice site, transitions between internal states
follow the rate

W (int)
α,α′ = ν e− E (α)−E (α′ )

2T , (4)

where T is the temperature of the heat bath (we set the Boltz-
mann constant to kB = 1), and ν is a constant rate. The energy
in Eq. (2) ensures that the transition rate in Eq. (4) favors
transitions towards the state which has locally the largest
population. At a fixed internal state, transitions of particles
jumping between sites are prescribed by

W (jmp)
α,α′ = γ e− E (α)−E (α′ )+s�μ

2T , (5)

where γ is a constant rate. The transitions along y are symmet-
ric (s = 0), while those along x are biased (s �= 0). In the latter
case, the value of s = ±1 depends on the internal state and on
the direction of the jump (Fig. 1). Thus, the position follows a
persistent random walk, where particles tend to preferentially
move in the direction set by their internal state.

Our transition rates W (int) and W (jmp) follow the thermo-
dynamic constraint of local detailed balance with respect to
the same interaction energy E [34–36,49]. This constraint
ensures that the contact with equilibrium reservoirs is prop-
erly taken into account; here, the heat bath (i.e., thermostat)
maintains a constant temperature T , and the chemical reser-
voir (i.e., chemostat) maintains a constant chemical potential
difference �μ. Specifically, �μ > 0 represents the energy
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FIG. 2. Phase diagram of lattice model as a function of alignment
strength ε and density ρ0. The system is in an apolar phase at small
(ε, ρ0 ), and a polar phase at large (ε, ρ0 ). For intermediate values
of (ε, ρ0), there is coexistence between a dense polar band and a
dilute apolar background. Snapshots represent the local polarization
Pi, j [Eq. (3)]. Parameters: ε0 = ε, ν = γ = T = 1, �μ = 0.3, n =
100.

provided by an underlying chemical reaction which fuels the
self-propulsion of particles. We assume that the reaction is
tightly coupled to the particle displacement: every product
consumption is associated with a biased jump between lattice
sites [25,26,29].

In the absence of activity (�μ = 0), the dynamics reduces
to equilibrium: it relaxes to the Boltzmann steady state (Ps ∼
e−E/T ) analogous to that of an Ising model. The crucial differ-
ence with the original AIM [38], and the main common point
with another thermodynamically consistent active model [50],
is that the jump rates between sites [Eq. (5)] depend on E .
In other words, the original AIM does not obey local detailed
balance. While the interaction energy E is defined in Ref. [50]
in terms of some mesoscopic variables that are averaged over
neighboring lattice sites, we here consider the local variables
(ρi, j, Pi, j ) [Eq. (3)] in the definition of E [Eq. (2)]. Yet, in
contrast with [38], interactions are not purely local, they now
also account for neighboring site populations. As discussed
in the following, this choice leads to the emergence of polar
bands.

B. Phase diagram: From apolar to polar

To establish the phase diagram of our dynamics [Eqs. (1)–
(5)], we perform numerical simulations using a Gillespie
algorithm [51]. We vary the total density of particles ρ0 =
N/n2 and the interaction strength ε. We identify three different
phases analogous to standard flocking models [9]: (i) a disor-
dered apolar phase at low (ρ0, ε), (ii) an ordered polar phase at
high (ρ0, ε), and (iii) an intermediate regime of (ρ0, ε) where
a dense polar band coexists with a dilute apolar background
(Fig. 2). In particular, the existence of a single polar band is
consistent with some related lattice models of flocking, where
particles only have two internal states [38,50]. In practice, we

expect that increasing the chemical potential difference �μ

[Eq. (4)] would lead to a broader regime of (ρ0, ε) where
polar-apolar coexistence is stable, by analogy with how the
self-propulsion affects the phase diagram in the original AIM
[38].

In the absence of nearest-neighbor interactions, namely
taking ε0 = 0 in Eq. (2), we do not observe any stable bands.
In fact, dense regions with locally high polarization do not
convert each other upon collisions, in contrast with the origi-
nal AIM [38]. Instead, such collisions here lead to long-lived
configurations where polarized walls moving in opposite di-
rections block each other. Indeed, since transitions between
sites now depend on energy differences [Eq. (5)], it is not en-
ergetically favorable for a + particle to jump from positively
polarized regions to negatively polarized ones (and vice versa
for − particles). This kinetic trapping is no longer present in
the presence of nearest-neighbor interactions.

In short, our model reproduces the main phenomenology of
the flocking transition [9]. By enforcing local detailed balance
in the choice of transition rates [Eqs. (4) and (5)], we are now
in a position to unambiguously define and study the energetics
of such a transition.

C. Entropy production rate

The entropy production rate (EPR) Ṡ associated with our
dynamics [Eq. (1)] reads [34,35]

Ṡ =
∑
α,α′

Wα,α′P (α) ln

( Wα,α′P (α)

Wα′,αP (α′)

)
� 0. (6)

Substituting into Eq. (6) the expression of the transition rates
Wα,α′ [Eqs. (4) and (5)], we deduce

T Ṡ = 〈Ẇact〉 − d

dt
(〈E〉 − T 〈S〉). (7)

The averages of the system’s entropy 〈S〉 and energy 〈E〉 are
given by

〈S〉 =
∑

α

P (α) lnP (α), 〈E〉 =
∑

α

P (α)E (α), (8)

where the microscopic interaction energy E is defined in
Eq. (2). We have introduced the rate of active work 〈Ẇact〉,
which is produced by jump transitions between sites W (jmp)

α,α′
[Eq. (5)]:

〈Ẇact〉 = �μ
∑
α,α′

W (jmp)
α,α′ P (α′) = �μ 〈Jp − Jm〉, (9)

where (Jp, Jm) denote the rate at which (+,−) particles jump
along êx, respectively. In what follows, we focus on steady-
state statistics, for which

T Ṡ = 〈Ẇact〉ss = �μ 〈Jp − Jm〉ss, (10)

where 〈·〉ss denotes the steady-state average. The stationary
EPR, also referred to as the dissipation rate, quantifies the rate
at which energy is dissipated to drive the motility of (+,−)
particles. It vanishes in the absence of activity (�μ = 0),
as expected for thermodynamically consistent dynamics. In
contrast, computing EPR in the original AIM and its variants
[38,52] does not lead to vanishing dissipation when the parti-
cles are not self-propelled.

024103-3



KAREL PROESMANS et al. PHYSICAL REVIEW E 112, 024103 (2025)

FIG. 3. (a) Entropy production rate (EPR) per particle, and
(b) global polarization P̄ = 1

N

∑
i, j Pi, j as functions of alignment

strength ε/T . In (a), we compare the direct evaluation of EPR [Ṡ,
Eq. (6)] with estimation from two inference methods, which ei-
ther track [ṠI, Eq. (12)] or discard [ṠII, Eq. (13)] internal states.
The dashed red line refers to the limit for noninteracting particles
[Eq. (11)]. Parameters: same as in Fig. 2, with ρ0 = 2.

We numerically evaluate the dissipation rate Ṡ [Eq. (10)]
as a function of the alignment strength ε [Fig. 3]. At small ε,
the dissipation rate is highest and coincides with the value for
noninteracting particles:

T Ṡ −→
ε→0

Nγ
�μ2

T
. (11)

Moreover, Ṡ decreases with ε in the apolar and polar phases.
For the intermediate regime of ε where a polar band forms, in-
stead Ṡ increases with ε. Our results are in stark contrast with
the evaluation of EPR in the original AIM [52], which yields a
cusp at the transition between apolar and coexistence phases.
In fact, such a cusp stems from discarding the dependence of
W (jmp)

α,α′ on E [Eq. (5)]: it remains present even in the absence
of self-propulsion [52], showing that it is due to the lack of
thermodynamic consistency.

D. Inference from tracer dynamics

Evaluating the dissipation rate Ṡ [Eq. (10)] requires track-
ing the internal states of particles. In fact, measuring the
currents (Jp, Jm) assumes that one can distinguish (+,−)
particles. Yet, in many experiments of self-propelled particles,
although one can typically track the displacement of parti-
cles, it is often difficult to determine the self-propulsion force

(which does not coincide with velocity a priori). An open
question is: how accurately can one estimate EPR despite
the inability to track internal states? To examine this issue,
we consider some strategies for evaluating EPR with only a
partial knowledge of the dynamics.

1. Tracking internal states

Inspired by Refs. [53,54], we explore under which condi-
tions the EPR can be inferred from the dynamics of a tracer
embedded in the system. Specifically, our aim is to reduce
our many-body dynamics [Eq. (1)] into the dynamics of some
representative particles for each state (+,−). To this end,
we consider the rate js↑ at which particles in a given state
s ∈ (+,−) jump to the up-site (namely, above its present
location); similarly, we introduce the rates ( js↓, js←, js→) for
jumps in other directions.

The jump rates can be numerically evaluated from the
statistics of waiting times (namely, the time between two
subsequent transitions). The waiting times essentially follow
Poisson distributions, with some deviations in the distribution
tails for the polar phase (Fig. 4). These results suggest that
tracers obey a Markovian dynamics to a good approximation:
we then extract ( js↑, js↓, js←, js→) as the inverse of the cor-
responding average waiting time.

Our evaluation of the rates assumes that each (+,−) par-
ticle follows a similar dynamics independently of its location.
In other words, we deliberately discard any effects stemming
from spatial inhomogeneities. The EPR of the tracer dynamics
then follows as

ṠI =
∑

s∈(+,−)

[
( js↑ − js↓) ln

js↑
js↓

+ ( js← − js→) ln
js←
js→

]
.

(12)

The inferred EPR ṠI [Eq. (12)] can be regarded as a coarse-
grained version [55] of the original EPR Ṡ [Eq. (6)], and it
should match Ṡ whenever interactions are negligible [53]. Our
numerical estimation shows that ṠI 
 Ṡ not only in the apolar
phase, as expected, but also in the polar state (Fig. 3). In fact,
slight deviations are observed close to the coexistence phase,
namely when spatial inhomogeneities (which are discarded by
our inference scheme) affect the dynamics.

2. Discarding internal states

Assuming that one cannot track internal states, the tracer
dynamics is then prescribed by effective transition rates which
do not distinguish (+,−) particles. The inferred EPR corre-
spondingly reads

ṠII = ( j↑ − j↓) ln
j↑
j↓

+ ( j← − j→) ln
j←
j→

, (13)

where

j↑ =
∑

s∈(+,−)

js↑, (14)

and a similar definition holds for ( j↓, j←, j→). The inferred
EPR ṠII [Eq. (13)] can be regarded as a coarse-grained version
of ṠI [Eq. (12)]. One can show that [36,55]

0 � ṠII � ṠI � Ṡ. (15)
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FIG. 4. Probability distribution k(t ) of the waiting time t be-
tween transitions where particles either jump between lattice sites
(↑, ↓,←, →) or change their internal state (flip). We distinguish
(top) + and (bottom) − particles in various phases: (left) apolar, (cen-
ter) coexistence, and (right) polar. The dashed lines are exponential
fits. Same parameters as in Fig. 3. All the particles are set to + in
initial conditions, so the polar and coexistence phases preferentially
feature + particles: in these phases, the distributions k(t ) are then
higher for + particles compared with − particles.

Therefore, the partial knowledge of the dynamics generally
leads to underestimating the EPR.

The deviation of ṠII from Ṡ is most striking in the apolar
phase, and progressively reduces as ε increases, until ṠII 

Ṡ deep in the polar phase (Fig. 3). In fact, the evolution of
ṠII is qualitatively (but not quantitatively) similar to that of
global polarization P̄ = 1

N

∑
i, j Pi, j . Interestingly, ṠII vanishes

in the apolar phase: this result suggests that the effective tracer
dynamics may appear as an effective equilibrium dynamics
in this regime, provided that one does not track the internal
states.

3. What do we learn from inference?

Overall, our results show that the inferred EPR ṠI

[Eq. (12)] is rather close to the original Ṡ [Eq. (6)] in all
phases: when tracking internal states, our inference method
provides a satisfactory estimation. Instead, a significant dis-
crepancy arises when discarding internal states [ṠII, Eq. (13)].
By definition, ṠII only detects the dissipation resulting from
particle displacement: it discards any contributions from the
dynamics of internal states, which are dominant in the apolar
phase and negligible in the polar phase.

In short, the flocking transition is associated with a
crossover between two regimes: (i) at weak interactions
(namely, low ε and ρ0), partial inference (that discards the dy-
namics of internal states) predicts a vanishing EPR, although
the EPR is actually very high, whereas (ii) at strong inter-
actions (namely, high ε and ρ0), partial inference accurately
captures the actual EPR. Interestingly, the dissipation rate is
highest (and identical to the value for noninteracting active

particles) in the apolar phase, namely in the absence of any
collective effects.

III. HYDRODYNAMICS OF FLOCKING

We obtain the hydrodynamic description of our lattice
model (Fig. 1) in the macroscopic limit of large system sizes
and small lattice spacing where we discard field fluctuations
[56]. We compute the corresponding EPR, and demonstrate
that it coincides with that of our lattice model.

A. Macroscopic field dynamics

We introduce the fields (p, m) defined by

p(ri j, t ) = pi, j (t ), m(ri j, t ) = mi, j (t ), (16)

where ri j = a(iêx + jêy), and a is the lattice spacing. The
fields of local density ρ and polarization P [Eq. (3)] are simply
related to (p, m) as

p = (ρ + P)/2, m = (ρ − P)/2. (17)

The interaction energy E [Eq. (2)] can be written in terms of
these fields as

E = −1

2

∫
V

dr

[
ε

P2

ρ
− ε̄

(
∇ P√

ρ

)2
]
, (18)

where V is the system size, and

ε̄ = lim
a→0

(ε0a2). (19)

Using path-integral methods, we obtain the equations for the
most likely value of the fields (p, m), which we denote by the
same symbols as the fluctuating fields for convenience (see
the Appendix), as

∂t p = D∇ ·
[

p

T

(
∇ δE

δp
+ f

)
+ ∇p

]
− pW+ + mW−,

∂t m = D∇ ·
[

m

T

(
∇ δE

δm
− f

)
+ ∇m

]
+ pW+ − mW−,

(20)

where the diffusion coefficient D and the force f read

D = lim
a→0

(γ a2), f = êx lim
a→0

(�μ/a), (21)

and we have introduced the rates

W+ = νe
1

2T ( δE
δp − δE

δm )
, W− = νe

1
2T ( δE

δm − δE
δp )

. (22)

Therefore, the hydrodynamic equations for (p, m) are readily
written in a closed form.

Such hydrodynamic equations are analogous to those of a
nonideal reaction-diffusion system [50,57]. In fact, our lattice
model describes a dynamics with reactions (green arrows in
Fig. 1) and biased diffusion (red and blue arrows in Fig. 1)
for a mixture of (+,−) interacting particles. The thermody-
namic consistency of the lattice dynamics ensures that the
corresponding hydrodynamics maps into equilibrium in the
absence of activity (f → 0). In this regime, one can show that
the equilibrium free energy

F = E + T
∫

V
dr(p ln p + m ln m) (23)
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is the Lyapunov function which determines the stationary
properties [50,57,58], as expected for passive dynamics.

Using Eq. (17), we readily deduce the closed form of
hydrodynamic equations for (ρ, P) from Eqs. (20)–(22) as

∂tρ = −∇ · jρ ∂t P = −∇ · jP + σP, (24)

where the diffusive currents (jρ, jP ) read

jρ = −D

T

(
ρ∇ δE

δρ
+ P∇ δE

δP
+ Pf

)
+ D∇ρ,

jP = −D

T

(
P∇ δE

δρ
+ ρ∇ δE

δP
+ ρf

)
+ D∇P,

(25)

and the source term σP is given by

σP = 2γ

[
ρ sinh

(
− 1

T

δE

δP

)
− P cosh

(
− 1

T

δE

δP

)]
. (26)

Setting E = 0 in the diffusive currents [Eq. (25)], which
amounts to assuming that transitions between microscopic
sites W (jmp)

α,α′ [Eq. (5)] are independent of interactions, one
recovers the hydrodynamic equations of the original AIM
[38]. In our case, the explicit dependence of (jρ, jP ) and σP

on interactions is the defining feature of nonideal reaction-
diffusion dynamics.

The fixed points (ρ0, P0) obey σP = 0, since the diffusive
currents vanish for homogeneous phases, yielding

P0

ρ0
= tanh

(
− 1

T

δE

δP

∣∣∣∣
ρ0,P0

)
= tanh

(
ε

T

P0

ρ0

)
, (27)

where we have used the expression of the interaction energy
E [Eq. (18)]. As in the original AIM [38], we deduce that
there exist two solutions: (i) an apolar phase (P0 = 0) at small
(ρ0, ε), and (ii) a polar phase (P0 > 0) at large (ρ0, ε). Linear
stability analysis shows that both phases are always stable
whenever ε̄ = 0 in E [Eq. (18)], and we expect this result to
hold even in the presence of nearest-neighbor interactions.

In short, by coarse-graining our lattice model, we obtain
a thermodynamically consistent description at the hydrody-
namic level, which maps into a nonideal reaction diffusion
system [57,58]. In the macroscopic regime where we neglect
fluctuations, the system only adopts a homogeneous config-
uration, either apolar or polar, in contrast with our lattice
model where a traveling band can emerge (Fig. 2). In fact,
accounting for weak hydrodynamic fluctuations would lead to
renormalizing hydrodynamic coefficients [45], which could
be sufficient to destabilize homogeneous phases and yield a
traveling band. Instead, for the thermodynamically consis-
tent model in Ref. [50], we expect that fluctuations do not
renormalize the hydrodynamic equations since microscopic

interactions depend on some mesoscopic variables (namely,
averaged over neighboring sites).

B. Macroscopic entropy production rate

To evaluate the macroscopic EPR, we cast the macroscopic
field dynamics [Eq. (20)] in a convenient form [57,58]

∂t p = −∇ · jp + σ, ∂t m = −∇ · jm − σ, (28)

where the source term σ is given by

σ = mW− − pW+, (29)

and the diffusive currents (jp, jm) read

jp = −μp

(
∇ δF

δp
+ f

)
, jm = −μm

(
∇ δF

δm
− f

)
, (30)

with the free energy F [Eq. (23)] and the mobilities

μp = D

T
p, μm = D

T
m. (31)

The EPR associated with this hydrodynamics can be decom-
posed as

Ṡmacro = Ṡdiff + Ṡreac, (32)

where the contributions from the diffusive (Ṡdiff ) and reactive
(Ṡreac) sectors of the dynamics read

T Ṡdiff =
∫

V

(
j2

p

μp
+ j2

m

μm

)
dr,

T Ṡreac =
∫

V
σ

(
δF

δm
− δF

δp

)
dr.

(33)

Such a decomposition of EPR is generic for thermodynami-
cally consistent dynamics of nonideal reaction-diffusion; for
instance, see Sec. IV B in Ref. [57]. In the presence of noise
terms, evaluating the irreversibility of field fluctuations (p, m)
leads to the same expression of EPR [59], as expected.

We now demonstrate that the macroscopic EPR [Ṡmacro,
Eqs. (32) and (33)] coincides with the macroscopic limit of
the microscopic EPR [Ṡ , Eq. (10)]. To this end, we evaluate
how the free energy F varies in time:

dF

dt
=

∫
V

[
δF

δp
∂t p + δF

δm
∂t m

]
dr

=
∫

V

[
σ

(
δF

δp
− δF

δm

)
+ jp · ∇ δF

δp
+ jm · ∇ δF

δm

]
dr,

(34)

where we have used the dynamics [Eq. (28)], and integrated
by parts. Expressing the chemical potentials ( δF

δp , δF
δm ) in terms

of the diffusive currents [Eq. (30)], we deduce

T Ṡmacro = f ·
∫

V
(jp − jm)dr − dF

dt
, (35)

where we have used the definition of Ṡmacro [Eqs. (32) and
(33)]. The connection in Eq. (35) between the macroscopic
EPR Ṡhydro, the free energy F , and the nonconservative force
f mirrors the equivalent version for the lattice model [Eq. (7)].
These generic relations hold for an arbitrary interaction
energy E .
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In the steady state, the contribution dF
dt vanishes in Eq. (35).

In the macroscopic regime, where field fluctuations can be
neglected, the relation

�μ 〈Jp − Jm〉ss −→ f ·
∫

V
(jp − jm)dr, (36)

together with Eq. (10), then leads to the correspondence be-
tween macroscopic and microscopic EPR:

Ṡ −→ Ṡmacro. (37)

Noting that jp − jm = jP, and using the explicit expression of
the diffusive current jP = −D

T ρ0f [Eq. (25)] for the homoge-
neous stationary profile (ρ, P) = (ρ0, P0), we deduce

T Ṡmacro = D

T
ρ0V f2. (38)

Therefore, within our macroscopic field dynamics, the EPR
is constant in all phases (apolar and polar), and coincides
with the value for a noninteracting system (ε = 0). Using
lima→0(γ�μ2) = Df2 [Eq. (21)] and ρ0V = N , we recover
the expression of the microscopic EPR [Eq. (11)] in the
regime of weak interactions, namely small (ε, ρ0), as ex-
pected.

In short, the thermodynamically consistent formulation of
the lattice model and its hydrodynamic description entails
a correspondence between the EPR evaluated at the micro-
scopic and macroscopic levels. Since our hydrodynamics only
features a homogeneous steady state, it does not reproduce the
variation of EPR reported in the lattice model (Fig. 3).

We can propose a macroscopic equivalent of the micro-
scopic EPR inferred without tracking internal states [ṠII,
Eq. (13)]. In fact, such an inference amounts to assuming that
one has only access to the dynamics of the density ρ, namely
without tracking the polarization P. Since the density has a
purely diffusive dynamics [Eq. (24)], with mobility D

T ρ and
current jρ [Eq. (25)], the associated EPR reads

T ṠII,macro = T

D

∫
V

j2
ρ

ρ
dr. (39)

In the steady state, we get jρ = −D
T P0f [Eq. (25)], yielding

T ṠII,macro = D

T

P2
0

ρ0
V f2. (40)

Therefore, estimating the EPR inferred without tracking in-
ternal states amounts to replacing ρ0 by P2

0 /ρ0 in the original
EPR [Eq. (38)]. Interestingly, ṠII,macro varies with interactions
through dependence on polarization P0, in contrast to Ṡmacro.
In fact, such a dependence is in qualitative agreement with
the numerical estimations in our lattice dynamics: it vanishes
in the apolar phase, and continuously increases with ε in
the coexistence and polar phases; see the polarization P and
inferred EPR ṠII in Fig. 3.

IV. DISCUSSION

We have examined how to unambiguously quantify the
dissipation in a lattice model of flocking. Inspired by the orig-
inal AIM [38,39], our model features two species of particles
which (i) self-propel in opposite directions, and (ii) change

the internal state that determines this direction. Crucial to our
approach is local detailed balance: it ensures that transitions
between states and jumps between lattice sites are constrained
by the same interaction energy [34–36,49]. This constraint
leads to a correspondence between the EPR evaluated at the
microscopic and macroscopic levels.

We demonstrate that the EPR undergoes a crossover: for
strong interactions, the EPR can be accurately inferred by
discarding the dynamics of internal states; for weak interac-
tions, such an inference severely underestimates the EPR. In
contrast with other works [16,52,60–63], the EPR is highest
(and equal to the noninteracting value) when the system is
in the apolar phase: this result is consistent with another
thermodynamically consistent study where interactions sys-
tematically reduce the EPR [59]. At the macroscopic level, the
EPR admits a decomposition between diffusive and reactive
contributions, as found in generic reaction-diffusion dynamics
[57,58].

Our approach for formulating active lattice models with
thermodynamic consistency can be generalized to a broader
class of dynamics; for instance, to quantify the dissipation of
clock models [40,44], dynamics with nonreciprocal interac-
tions [64–68], or pulsating systems [69–71]. Finally, similar
thermodynamically consistent lattice models can potentially
be used to properly evaluate the heat capacity of active sys-
tems [72], in line with recent experiments in living systems
[23,24].
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APPENDIX: STOCHASTIC FIELD DYNAMICS

In this Appendix, we derive the stochastic dynamics of the
fields for the local number of (+,−) particles, respectively
denoted by p(r, t ) and m(r, t ) [Eq. (16)]. To this end, we start
with the master equation describing the microscopic lattice
dynamics [Eq. (1)], and coarse-grain for a small lattice spac-
ing.

We consider the action functional A that defines the
path probability proportional to e−A for our lattice dynam-
ics [Eq. (1)]. Following standard methods [56,73–75], we
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obtain

A =
∫

dt
∑
i, j

{
− p̂i, j ṗi, j − m̂i, j ṁi, j + W (i, j,−|i, j,+)pi, j (e

−p̂i, j+m̂i, j − 1) + W (i, j,+|i, j,−)mi, j (e
−m̂i, j+p̂i, j − 1)

+
∑
k,l

[
W (k, l,+|i, j,+)pi, j (e

−p̂i, j+p̂k,l − 1) + W (k, l,−|i, j,−)mi, j (e
−m̂i, j+m̂k,l − 1)

]}
, (A1)

where ( p̂i, j, m̂i, j ) are auxiliary variables. The rate W (k, l, s′|i, j, s) corresponds to a transition of a particle with state s ∈ (+,−)
at the lattice site (i, j) to a state s′ ∈ (+,−) at lattice site (k, l ). In practice, a transition changes either the internal state of the
particle [Eq. (4)] or the position of the particle from a given lattice site to its neighbor [Eq. (5)].

In the continuum limit, we expand the terms in Eq. (A1) for a small a. First, the auxiliary variables read

p̂k,l (t ) 
 p̂(ri j, t ) + a∇̂ p̂(ri j, t ) + 1
2 (a∇̂ )2 p̂(ri j, t ), (A2)

and a similar expansion holds for m̂k,l . Second, the rates for transitions between sites [Eq. (5)] can be written as

W (k, l,+|i, j,+) 
 γ

[
1 − a

2T

(
∇̂ δE

δp
+ f̂

)]
,

W (k, l,−|i, j,−) 
 γ

[
1 − a

2T

(
∇̂ δE

δm
− f̂

)]
,

(A3)

with (∇̂, f̂ ) the projections of (∇, f ), respectively, onto the unit vector pointing from (i, j) to (k, l ), and the force f is defined in
Eq. (21). Third, the rates for transitions between states [Eq. (4)] simplify as

W (i, j,+|i, j,−) 
 W−, W (i, j,−|i, j,+) 
 W+, (A4)

where (W+,W−) are defined in Eq. (22). Substituting these expansions [Eqs. (A2)–(A4)] into the action A [Eq. (A1)], we deduce

A ∝
∫

dt
∫

V
dr

{
− p̂∂t p − m̂∂t m + D

[
p

T

(
−∇ δE

δp
− f

)
· ∇ p̂ + p̂∇2 p + p(∇ p̂)2

]

+ D

[
m

T

(
−∇ δE

δm
+ f

)
· ∇m̂ + m̂∇2m + m(∇m̂)2

]
+ W+ p(e−p̂+m̂ − 1) + W−m(e−m̂+p̂ − 1)

}
, (A5)

where the diffusion coefficient D is defined in Eq. (21). The stochastic differential equations associated with the action A can be
written as

∂t p = D∇ ·
[

p

T

(
∇ δE

δp
+ f

)
+ ∇p + ξp

]
− N+ + N−,

∂t m = D∇ ·
[

m

T

(
∇ δE

δm
− f

)
+ ∇m + ξm

]
+ N+ − N−,

(A6)

where (N+,N−) are Poisson noises with respective rates proportional to (W+,W−), and (ξp, ξm) are independent Gaussian
white noises with zero mean and correlations given by

〈ξpα (r, t )ξpβ (r′, t ′)〉 = 2p

DV
δαβδ(t − t ′)δ(r − r′),

〈ξmα (r, t )ξmβ (r′, t ′)〉 = 2m

DV
δαβδ(t − t ′)δ(r − r′). (A7)

For large system sizes (V → ∞), the contribution from the fluctuating terms in Eq. (A6) is negligible, yielding the macroscopic
field dynamics in Eq. (20).
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