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We discover unexpected connections between packing configurations and rare fluctuations in dense
systems of active particles subject to pulsation of size. Using large deviation theory, we examine biased
ensembles which select atypical realizations of the dynamics exhibiting high synchronization in particle
size. We show that the order emerging at high bias can manifest as distinct dynamical states featuring high
to vanishing pulsation current. Remarkably, transitions between these states arise from changing the system
geometry at fixed bias and constant density. We rationalize such transitions as arising from the change in
packing configurations which, depending on box geometry, may induce highly ordered or geometrically
frustrated structures. Furthermore, we reveal that a master curve in the unbiased dynamics, correlating
polydispersity and current, helps predict the dynamical state emerging in the biased dynamics. Finally, we
demonstrate that deformation waves can propagate under suitable geometries when biasing with local
order.
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Introduction—Active matter encompasses systems
which constantly dissipate energy to sustain collective
behaviors far from equilibrium. For instance, assemblies
of self-propelled particles (SPPs) [1–3] yield nonequili-
brium phenomena which have been extensively studied,
such as a polarized collective motion [4,5] and a phase
separation without attractive interactions [6,7]. Energy
dissipation can also take other forms beyond motility,
opening the door to novel physics beyond that of SPPs.
For instance, in some biological tissues (e.g., epithelial [8],
cardiac [9], and uterine [10] tissues), each cell can sustain
periodic changes of shape, leading to the propagation of
deformation waves. A recent model of pulsating active
matter (PAM) has captured such waves in terms of densely
packed particles whose sizes constantly pulsate [11]. In
contrast with other models of deforming particles where
waves have not been observed [12–15], PAM relies on
synchronizing nearby sizes [11,16–19]. In the absence of
any synchronizing interaction, it is largely unclear under
which conditions deformation waves could still potentially
emerge.
Biased ensembles (BEs) offer the perfect toolbox [20] to

search for waves in nonsynchronizing PAM. Building on
large deviation theory [21], BEs select the rare trajectories
which (i) achieve some atypical statistics of a chosen
observable while (ii) deviating the least from the original,
unbiased dynamics. In practice, BEs do not presume how
the system should accommodate the constraints (i) and (ii).
At a sufficiently large bias, the dynamics are given enough
play to explore novel configurations, potentially yielding
dynamical phase transitions [22–24]. Rare trajectories can
actually be mapped into an effective dynamics [25–28],
which constitute the optimal mechanism for stabilizing the

phases selected by BEs. This connection between optimal
control and large deviations has inspired novel strategies
for material design [29,30].
In active matter, BEs have already been used to unravel

novel mechanisms for promoting collective effects [31].
For instance, in large deviations of SPPs [32–34], BEs have
revealed that alignment effectively emerges from avoiding

FIG. 1. (a) Size of particles subject to a periodic pulsation
controlled by an internal phase. In biased ensembles at high
density, changing the box aspect ratio L=l with sides fl; Lg
results in various configurations with either (b) defects, (c) voids,
or (d) regular structures. These correspond, respectively, to
varying collective states for different L=l: (e),(i) cycles with
periodic size change, (f),(h) intermittent behavior with aperiodic
size change, and (g) arrest where particle repulsion yields a
uniform frozen size. Particles are indexed per increasing position
along the L axis. Dashed lines refer to the snapshots shown in
(b)–(d), and symbols indicate parameter values in Fig. 3.
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collisions between nearby particles, yielding collective
motion [35–37]. These results are reminiscent of the
collective behaviors emerging in some models of SPPs
without alignment [38–40] and stand in contrast with
standard flocking models which require ad hoc aligning
rules [5]. In a similar fashion, it is tempting to examine
whether BEs of nonsynchronizing PAM entail unexpected
transitions, potentially uncovering novel pathways toward
wave formation.
In this Letter, we investigate the collective dynamics in

BEs of dense assemblies of pulsating particles in a two-
dimensional box (Fig. 1). Starting from configurations
without any synchronization, we reveal how biasing with
a global order parameter promotes transitions toward
various homogeneous states: cycles, arrest, and intermittent
behavior. Remarkably, the packing constraint imposed by
the box geometry, which restricts the unbiased configura-
tions and, hence, its fluctuations, also selects for one of the
three ordered states under bias. Specifically, we show that
slight variations in the unbiased statistics of some relevant
observables allow one to anticipate the emergence of
transitions in the biased dynamics. Finally, we reveal that
deformation waves can be stabilized for specific geometries
when biasing with a local order parameter. Overall, our
results demonstrate that, at fixed bias and constant density,
controlling the box geometry is a novel route toward
unexpected phase transitions in BEs of PAM.
Pulsating active matter: The role of box geometry—We

consider a two-dimensional system of pulsating particles
(Fig. 1) whose sizes change as

σi ¼
σ0
2

1þ λ sin θi
1þ λ

; ð1Þ

where σ0 ¼ 1 is the base size, θi the internal phase of
particle i, and λ ¼ 0.05 the pulsation amplitude. The
particles follow overdamped Langevin dynamics:

ṙi ¼ −μr∂riV þ
ffiffiffiffiffiffiffiffi
2Dr

p
ξi; ð2Þ

θ̇i ¼ ω − μθ∂θiV þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ηi: ð3Þ

The potential V ¼ P
i;j<i UðaijÞ depends on the scaled

distance aij ¼ jrj − rij=ðσi þ σjÞ, and ðξi; ηiÞ are uncorre-
lated Gaussian white noises with unit correlations. The
phase drift is constant and set to ω ¼ 10. The diffusion
coefficients Dr=θ and mobilities μr=θ follow the fluctuation-
dissipation relation (Dr=μr ¼ Dθ=μθ ¼ T) and are set to
unity. Then, in the absence of drift (ω ¼ 0), the system
follows an equilibrium dynamics which relaxes to the
Boltzmann distribution P ∼ e−V=T . Interactions follow
volume exclusion via a Weeks-Chandler-Anderson poten-
tial UðaÞ ¼ U0ða−12 − 2a−6Þ with U0 ¼ 1 and cutoff set at
a ¼ 1. In contrast with [11], we do not consider here any

synchronizing interaction between phases. In what follows,
we run simulations with periodic boundary conditions for
N ¼ 32 particles at density ρ ¼ 1.6 (unless stated other-
wise), and we examine how the box aspect ratio L=l
(Fig. 1) impacts the emerging dynamics.
We start by evaluating the global order parameter

quantifying phase synchronization across the system:

ϕgb ¼
1

N

����
XN
j¼1

eiθj
���� ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i;j¼1

cosðθi − θjÞ
vuut : ð4Þ

Configurations with a nearly uniform size distribution have
ϕgb ≃ 1, whereas those with high polydispersity have
ϕgb ≃ 0. Despite the absence of any synchronizing inter-
action, our simulations exhibit a moderate ordering of
particle sizes [Fig. 2(a)]. Indeed, the repulsion term in
Eq. (3) constrains the sizes to fluctuate around a preferred
value. This effect is captured at mean-field level by
approximating ∂θiV ≈ ð∂φVÞð∂θiφÞ [11]. The coefficient
∂φV increases with ρ, and the packing fraction φ ¼
ðπρ=NÞPi σ

2
i admits the same local minimum for each

θi ∈ ½0; 2π�, thus favoring order at high ρ.
Interestingly, we observe that hϕgbi (where h·i indicates

average over realizations) strongly varies with the aspect
ratio L=l, with a maximum at L=l ≃ 5 [Fig. 2(a)], showing
that one can actually enhance order by appropriately tuning
the box geometry. We find that such a variation with L=l
wanes gradually for larger N at fixed ρ but remains
noticeable even for systems with N ≃ 102 (see Fig. S2 in
[41]). The enhancement of order is accompanied by a
dynamical slowdown, as indicated by the reduction of the
average phase current [Fig. 2(b)]:

FIG. 2. (a),(b) Global order hϕgbi and phase current hνi as
functions of the aspect ratio L=l. Lines are guides to the eye.
(c)Correlationbetweenglobal order hϕgbiandphase current hνi for
various densities ρ ¼ N=ðLlÞ, changing bothL=l and the particle
numberN. (d) Average overlap hσovi, relative to that of hexagonal
packing σovx at the same density, for varying values of L=l.
(e) Radial distribution g as a function of the interparticle distance r.
Line colors in (b), (d), and (e) as per the value of hϕgbi in (a).

PHYSICAL REVIEW LETTERS 134, 038301 (2025)

038301-2



ν ¼ 1

Nωt

XN
i¼1

Z
t

0

dt0θ̇iðt0Þ: ð5Þ

Similar results hold for other box ratios and particle
numbers; see Fig. S5 in [41]. In fact, plotting hϕgbi against
hνi for different values of N, L=l, and ρ results in a master
curve, where increasing order systematically correlates
with decreasing current [Fig. 2(c)]. Interestingly, some of
the curves, shown in Fig. 2(c) for different ρ, overlap.
Indeed, for some combinations of N and L=l, systems at
various ρ can experience an equivalent average repulsion,
yielding a similar set of values for hϕgbi and hνi.
We can rationalize these results from a packing per-

spective. To this end, we explore how repulsion varies for
different values of L=l by computing the average overlap:

hσovi ¼
2

NðN − 1Þ
X
i;j∈ ∂i

hσi þ σj − jri − rjji; ð6Þ

where the sum runs over particles for which
σi þ σj > jri − rjj. We find the average overlap peaks at
L=l ≃ 5 [Fig. 2(d)], which coincides with the maximum of
hϕgbi and the minimum of hνi [Figs. 2(a) and 2(b)].
Interestingly, hσovi is comparable to the overlap σovx of
a hexagonal packing at the same density (Appendix A), and
a regular structure can be identified at L=l ≃ 5; see Sec. I A
in [41]. These results indicate that higher overlap (hence,
repulsion) induce more regular arrangements, correspond-
ing to lower polydispersity and lower pulsation current in
the system. To illustrate further the relation between
structure and box geometry, we evaluate the radial dis-
tribution function (rdf)

gðrÞ ¼ 1

ρ

X
i;j≠i

hδðr − jri − rjjÞi ð7Þ

and observe that indeed density correlations change dras-
tically for varying L=l [Fig. 2(e)]. In particular, the rdf for
L=l ¼ 5 features a secondary peak at r ≃ 1.1 not present
for other values of L=l, which hints at qualitative
differences between the corresponding packing structures.
A similar dependence of structure on box geometry has
been reported in systems of monodisperse, passive particles
[45–47].
In short, our findings show that changing the box

geometry alters the packing structure assumed by pulsating
particles, which, in turn, provides a route to controlling
order and current at fixed density.
Ensembles biased by global order: Cycles and arrest—

We study the large deviations of the dynamics with respect
to ϕgb [Eq. (4)]. In particular, we seek trajectories for which
the time average

ϕ̄gb ¼
1

to

Z
to

0

ϕgbðtÞdt ð8Þ

displays atypically large values at large observation time to.
To this end, we use a BE selecting for such trajectories
through rare realizations of the noise terms in Eqs. (2) and
(3). Chiefly, we denote averages with respect to this BE as

h·igb ¼
h·e−sNtoϕ̄gbi
he−sNtoϕ̄gbi : ð9Þ

The bias strength s effectively controls the statistics of ϕ̄gb.
At vanishing bias, s ¼ 0, one recovers the ensemble of the
original dynamics: h·igb ¼ h·i. In this work, we implement
the trajectory selection via a cloning algorithm using
population dynamics [48]. It consists in simulating nc
identical (though distinctly seeded) parallel runs, which are
regularly replicated or pruned through a sampling pro-
cedure parametrized by s. In the limit of large nc and large
to, this procedure converges to a BE whose trajectories
represent the least unlikely dynamics to stabilize the
desired atypical statistics of ϕ̄gb.
For large N, numerical convergence becomes increas-

ingly challenging [20]. Generally, a useful method consists
in adding some terms in the dynamics which effectively
approximate trajectory selection and improves convergence
[20,35,36,49,50]. Here, we consider fully connected syn-
chronizing interactions:

θ̇i ¼ ω − μθ∂θiV þ ε
XN
j¼1

sinðθj − θiÞ þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ηi: ð10Þ

We adapt our numerical selection of trajectories [41] to
ensure that, while using the dynamics in Eq. (10), we still
sample the proper BE [Eq. (9)] defined independently of
synchronizing interactions. Furthermore, for each run, we
heuristically adjust the amplitude ε throughout the trajec-
tory [41], which converges at large t0 to a value determined
by s. In what follows, we are interested in the regime of bias
which promotes order, namely, atypically large ϕ̄gb, cor-
responding here to s < 0 and ε > 0.
Starting from the unbiased configuration with highest

hϕgbi and lowest hνi, namely, for L=l ≃ 5 [Figs. 2(a) and
2(b)], increasing jsj yields a highly ordered state without
phase current: hϕgbigb ≃ 1 and hνigb ≃ 0 [Figs. 3(a) and
3(b)]. Such a configuration is analogous to the arrested state
previously reported in synchronizing PAM [11,17].
Remarkably, considering an unbiased configuration at
the tail of the curve hνi vs L=l [Fig. 2(b)], increasing
jsj now yields an ordered state with nonvanishing averaged
current [Figs. 3(a) and 3(b)], which is reminiscent of the
cycling state in synchronizing PAM [11,17]. Therefore, the
box geometry not only impacts the unbiased dynamics of
nonsynchronizing PAM, it also strongly influences its rare
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fluctuations, yielding two different types of ordered
states.
Varying L=l at constant jsj > 4.5, the transition between

cycling and arrest [Fig. 3(b)] mirrors the slowdown of the
unbiased dynamics [Fig. 2(b)]. Again, this result can be
rationalized from a packing perspective. Specifically, arrest
is associated with a regular packing [Fig. 1(d)] which
impedes the periodic expansion and contraction of parti-
cles [Fig. 1(g)], whereas cycles have a defective packing
[Fig. 1(b)] which facilitates global changes in particle sizes
[Figs. 1(e) and 1(i)]. Note that hϕgbigb is slightly higher for
arrest compared with cycles [Fig. 3(a)], so that regular
packing is associated with a reduced polydispersity, as in
the unbiased case (Fig. 2). Interestingly, we also observe
an intermittent dynamics with aperiodic size changes
[Figs. 1(f) and 1(h)] whose packing contains motile voids
[Fig. 1(c)]. Indeed, measurements of structural order clearly
highlight structural differences between each one of these
dynamical states; see Appendix B and Fig. S4 in [41].
Overall, our results for ðN; ρÞ ¼ ð32; 1.6Þ show that

packing configurations, imposed by the box geometry,
impact both unbiased and biased dynamics. Importantly,
we reveal that the unbiased statistics actually allows one to
anticipate how the system orders as a function of L=l in our
BE. We find a similar effect is generically observed for
other values of ðN; ρÞ; for instance, see the phase diagram
for ðN; ρÞ ¼ ð26; 1.6Þ in Fig. S5 of [41].
Ensembles biased by local order: Deformation waves—

In synchronizing PAM [11,17], deformation waves
emerge as a competition between arrest and cycling.
Given that in nonsynchronizing PAM the BE promoting
global order [Eq. (9)] yields arrest and cycles (Fig. 3), it is
intriguing to understand what class of BE may also induce
deformation waves. To this end, we introduce the local
order parameter

ϕlc ¼
1

N

XN
i¼1

Xni
j¼1

cos ðθj − θiÞ
ni

; ð11Þ

where ni is the number of neighbors in contact with
particle i, and the corresponding biased average

h·ilc ¼
h·e−sNtoϕ̄lci
he−sNtoϕ̄lci ; ϕ̄lc ¼

1

to

Z
to

0

ϕlcðtÞdt: ð12Þ

To improve sampling, we now consider locally synchro-
nizing interactions:

θ̇i ¼ ω − μθ∂θiV þ ε
Xni
j¼1

sinðθj − θiÞ þ
ffiffiffiffiffiffiffiffiffi
2Dθ

p
ηi: ð13Þ

In practice, Eq. (13) enhances convergence for the BE in
Eq. (12) at moderate jsj, while Eq. (10) actually works
better for the same BE at large jsj. At each s, we
systematically compare results obtained by employing
either type of interaction (i.e., with local or global
synchronization) and select the ones with optimal con-
vergence [41].
Interestingly, for values of L=l coincident with the

minimum of hνi [Fig. 2(b)], we observe again the emer-
gence of an arrested state with local and global order
[Figs. 4(a) and 4(b)] comparable to the results from the
previous BE [Eq. (3)]. In contrast, for L=l sufficiently far
away from the minimum of hνi, phase ordering now occurs
through two distinct states. As jsj increases, local order
increases with negligible change in global order, i.e.,
hϕlcilc > hϕlci and hϕgbilc ≃ hϕgbi. In this state, particle
sizes cycle periodically in a locally coordinated way,
yielding the spontaneous emergence of deformation waves
[Figs. 4(d) and 4(e)] not present in the unbiased dynamics
[Fig. 4(c)]. For higher jsj, the range of particle coordination
increases, which increases global order (hϕgbilc > hϕgbi)
and ultimately results in a cycling state [Fig. 4(f)] similar to
that of the previous BE [Fig. 1(e)].
In this manner, the BE promoting local order [Eq. (12)]

reproduces all the states of synchronizing PAM [11,17]:
disorder, arrest, cycles, and waves. Furthermore, waves
arise only for box sizes L accommodating at least one
wavelength. As the wavelength increases with jsj, waves
are stable only over a finite range of s. As such, waves can
be seen as precursory to cycles. In contrast, arrest does not
display such a gradual ordering from local to global but
rather directly emerges from disorder at comparatively low
bias. Moreover, the critical s for this transition is almost
unchanged when biasing with either global [Fig. 3(a)] or
local [Fig. 4(b)] order.
In short, our results demonstrate that waves spontane-

ously emerge as a strategy to promote high local order
while maintaining only moderate global order. Again, the
box geometry plays a crucial role here. Specifically, for
values of L=l promoting regular packing configurations,
local deformations are strongly hampered, so that arrest is
more stable than waves for any s < 0.

FIG. 3. Phase diagram in ensembles biased by global order
[Eq. (9)] in terms of the bias strength s and the aspect ratio L=l:
(a) global order hϕgbigb and (b) phase current hνigb. Boundary lines
are for hϕgbigb ¼ 0.65 (solid) and hνigb ¼ 0.1 (dashed). Markers
refer to various trajectories at s ¼ −6, as shown in Fig. 1.
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Discussion—We reveal some unexpected connections
between packing configurations and rare fluctuations in
dense systems of pulsating particles. The box geometry is a
proxy to controlling the packing structure, with dramatic
consequences on collective effects. Specifically, we show
that one can induce transitions between two types of
ordered states in BEs, either with or without current,
simply by changing the box geometry. Arrest is associated
with regular packing configurations where the particle
repulsion exactly counteracts their pulsation. On the other
hand, when the box geometry induces a defective packing,
it generates regions of inhomogeneous repulsion that
ultimately lead to cycling. Remarkably, the transitions
between arrest and cycles in the biased dynamics can
actually be anticipated from the statistics of current and
order in the unbiased dynamics.
Our transitions bring interesting parallels with the

emergence of arrest in other dense systems. In densely
packed SPPs, structural defects destabilize arrest [51], alter
the glass transition [52], and induce intermittent plastic
yielding [53]. The mechanical properties of such systems
can actually be related to those of sheared granular systems
[54]. Moreover, local growth of deforming particles also
results in dynamical heterogeneities resembling sheared
glasses [55]. These examples suggest that a generic
mechanism may explain how activity controls the transi-
tions between arrested and fluidized states. Remarkably,
even in the absence of shear, allowing size fluctuations
shifts the glass transition to lower temperatures [56–59],
illustrating how local deformation helps relax the dynamics
near arrest [60].
Our approach could also motivate further studies in other

active models where synchronization yields patterns

[61–63]. For instance, considering BEs with local or global
order could help delineate minimal conditions to stabilize
patterns, similarly to how waves emerge only for specific
box geometries in our case. To improve sampling, one
could rely on more complex interactions beyond the
synchronization considered here. To this end, recent meth-
ods inspired by machine learning provide a rich toolbox
[64–66] which could prove quite useful.
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[5] H. Chaté, Dry aligning dilute active matter, Annu. Rev.
Condens. Matter Phys. 11, 189 (2020).

[6] Y. Fily and M. C. Marchetti, Athermal phase separation of
self-propelled particles with no alignment, Phys. Rev. Lett.
108, 235702 (2012).

[7] M. E. Cates and J. Tailleur, Motility-induced phase separa-
tion, Annu. Rev. Condens. Matter Phys. 6, 219 (2015).

[8] A. Bailles, E. W. Gehrels, and T. Lecuit, Mechanochemical
principles of spatial and temporal patterns in cells and
tissues, Annu. Rev. Cell Dev. Biol. 38, 321 (2022).

[9] A. Karma, Physics of cardiac arrhythmogenesis, Annu. Rev.
Condens. Matter Phys. 4, 313 (2013).

[10] K. M. Myers and D. Elad, Biomechanics of the human
uterus, WIREs Syst. Biol. Med. 9, e1388 (2017).

[11] Y. Zhang and E. Fodor, Pulsating active matter, Phys. Rev.
Lett. 131, 238302 (2023).

[12] E. Tjhung and T. Kawasaki, Excitation of vibrational soft
modes in disordered systems using active oscillation, Soft
Matter 13, 111 (2017).

[13] E. Tjhung and L. Berthier, Discontinuous fluidization
transition in time-correlated assemblies of actively
deforming particles, Phys. Rev. E 96, 050601(R) (2017).

[14] N. Oyama, T. Kawasaki, H. Mizuno, and A. Ikeda, Glassy
dynamics of a model of bacterial cytoplasm with metabolic
activities, Phys. Rev. Res. 1, 032038(R) (2019).

FIG. 4. Phase diagram in ensembles biased by local order
[Eq. (12)] in terms of the bias strength s and the aspect ratio L=l:
(a) local order hϕlcilc and (b) global order hϕgbilc. Boundary lines
are for hϕlcilc ¼ 0.65 (solid) and hϕgbilc ¼ 0.45 (dashed). Mark-
ers refer to various trajectories at L=l ¼ 4.53: (c) disorder, (d),
(e) waves, and (f) cycles.

PHYSICAL REVIEW LETTERS 134, 038301 (2025)

038301-5

https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.85.1143
https://doi.org/10.1103/RevModPhys.88.045006
https://doi.org/10.1016/j.physa.2017.12.137
https://doi.org/10.1103/PhysRevLett.75.1226
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1146/annurev-conmatphys-031119-050752
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1103/PhysRevLett.108.235702
https://doi.org/10.1146/annurev-conmatphys-031214-014710
https://doi.org/10.1146/annurev-cellbio-120420-095337
https://doi.org/10.1146/annurev-conmatphys-020911-125112
https://doi.org/10.1146/annurev-conmatphys-020911-125112
https://doi.org/10.1002/wsbm.1388
https://doi.org/10.1103/PhysRevLett.131.238302
https://doi.org/10.1103/PhysRevLett.131.238302
https://doi.org/10.1039/C6SM00788K
https://doi.org/10.1039/C6SM00788K
https://doi.org/10.1103/PhysRevE.96.050601
https://doi.org/10.1103/PhysRevResearch.1.032038


[15] Y. Koyano, H. Kitahata, and A. S. Mikhailov, Diffusion in
crowded colloids of particles cyclically changing their
shapes, Europhys. Lett. 128, 40003 (2019).

[16] Y. Togashi, Modeling of nanomachine/micromachine
crowds: Interplay between the internal state and surround-
ings, J. Phys. Chem. B 123, 1481 (2019).

[17] A. Manacorda and E. Fodor, Diffusive oscillators capture
the pulsating states of deformable particles,
arXiv:2310.14370.

[18] W. hua Liu, W. jing Zhu, and B. quan Ai, Collective motion
of pulsating active particles in confined structures, New J.
Phys. 26, 023017 (2024).

[19] Z.-Q. Li, Q.-L. Lei, and Y. qiang Ma, Fluidization and
anomalous density fluctuations in epithelial tissues with
pulsating activity, arXiv:2402.02981.

[20] R. L. Jack, Ergodicity and large deviations in physical
systems with stochastic dynamics, Eur. Phys. J. B 93, 74
(2020).

[21] H. Touchette, The large deviation approach to statistical
mechanics, Phys. Rep. 478, 1 (2009).

[22] J. P. Garrahan, R. L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, and F. van Wijland, Dynamical first-order
phase transition in kinetically constrained models of glasses,
Phys. Rev. Lett. 98, 195702 (2007).
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Appendix A: Overlap distance in dense monodisperse
systems—To compute the overlap distance σovx for a
monodisperse crystal, we determine the maximum
interparticle distance rm which minimizes repulsion
between particles by minimizing their overlap.
Monodispersity implies that all particles have the same
phase θi ¼ θ. For arrested states (θ̇ ¼ 0), the noiseless
phase dynamics [Eq. (3)] reduces to

ω ¼ nnμθ∂θUðr; θÞ; ðA1Þ

where nn is the number of contact neighbors, which de-
fines an implicit function r ¼ rðθÞ. Assuming hexagonal
packing (nn ¼ 6) and maximizing with respect to θ, we
find θm ≃ 0.562 and deduce rðθmÞ ≃ 0.845. The overlap
distance follows as σovx ¼ 2σm − rm ≃ 0.133, where
σm ¼ ½1þ λ sinðθmÞ�=½2ð1þ λÞ� is the optimal particle
radius [Eq. (1)].

Appendix B: Structural analysis of biased configu-
rations—To systematically characterize the structural
configurations emerging under bias, we measure the
orientational order parameter Ψk defined as

Ψk ¼
1

N

�XN
j¼1

Xnj
l¼1

eikαjl
�

gb
; ðB1Þ

where nj is the number of nearest neighbors of particle
j and the integer k refers to the degree of orientational
order. The orientation angle αjl is defined in terms of
the distance vector between two neighboring particles
ðj; kÞ relative to a fixed axis. We choose to consider
k ¼ f4; 6g, and we employ the weighed Voronoi method
to evaluate Ψ4=6 [42,43]. The system goes from
hexagonal-like to squarelike structures as L=l varies
from arrest (L=l ≃ 5, high Ψ4, and low Ψ6) to cycling
and intermittent states (L=l ≠ 5, high Ψ6, and low Ψ4)
[Fig. 5(a)].
Interactions between particle phases θi take place when-

ever particles are in contact (aij ≤ 1), so that structural
order can emerge only via the following two conditions:
(i) low particle polydispersity (i.e., phase homogeneity) and
(ii) persistent neighborhood of particle contacts. The latter
accounts for the fact that irregular contact profiles (e.g., via
structural defects) alter the local phase dynamics and
promote polydispersity. In contrast, for passive particles
with fixed sizes, interparticle distance alone suffices to
determine structural order.
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To evaluate the statistics of particle polydispersity, we
first measure the phase variance

VarðθÞ ¼ 1

N

�XN
i¼1

ðθi − θmÞ2
�

gb
ðB2Þ

for realizations where the average phase θm ¼
ð1=NÞPN

j¼1 θj is approximately the same for all states
(either arrested, intermittent, or cycling). We find that
VarðθÞ is lowest for arrest (L=l ¼ 5) and higher for the
intermittent and cycling states (L=l ¼ 4.13 and 6.17,
respectively) [Fig. 5(b)]. This result indicates that arrest
features a more homogeneous phase distribution (i.e., lower
polydispersity) than intermittent or cycling states.
Second, we display the contact profiles, given by the

number of contact neighbors per particle [Figs. 5(c)–5(e)]

and estimate their persistence in time via histograms of the
number of contacts from the corresponding biased trajec-
tories [Figs. 5(f)–5(h)]. For intermittent and cycling states,
histograms reveal a majority of six-neighbor contacts,
along with noticeable contributions from contacts with
five or fewer neighbors [Figs. 5(f) and 5(g)]: This result
hints at the presence of defects in a hexagonal packing
structure. In contrast, five-neighbor contacts predominate
for arrest [Fig. 5(h)], indicating a persistent, regular
structure, albeit with a nonhexagonal packing. Indeed,
the arrested structure conforms to an elongated honeycomb
crystal, as shown in Fig. S4 of [41].
In all, the structural analysis supports that arrest is

associated with a regular packing configuration, whereas
intermittent and cycling states feature some defective and
nonpersistent configurations.

FIG. 5. (a) Orientational order parameters Ψ4=6 and (b) phase variance VarðθÞ in ensembles biased by global order [Eq. (9)], as
functions of the box geometry L=l for s ¼ −6. (c)–(e) Corresponding snapshots of biased configurations, identical to Fig. 1, here
colored by the number of contact neighbors. For (c) and (d), red indicates particles with five contact neighbors or less and gray for six
neighbors. For (e), gray indicates particles in contact with five neighbors. (f)–(h) Histogram in time of the number of contacts estimated
from biased trajectories, with the same parameters as in (c)–(e).
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