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Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein
relation between injection and dissipation of energy at the microscopic scale. We consider such a system of
interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their
dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state
measure and show that, for short persistent times, the entropy production rate vanishes. This endows such
systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last,
we show how interacting particle systems with viscous drags and correlated noises can be seen as in
equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence
providing energetic insight into the departure of active systems from equilibrium.
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Active matter systems comprise large assemblies of
individual units that dissipate energy, often stored in
the environment, to produce mechanical work [1]. From
the collective motion of self-propelled particles [2,3] to the
existence of a liquid phase in the absence of attractive
forces [4–6], many intriguing phenomena have generated a
continuously growing interest for active matter over the
past decades [1]. Since active systems break detailed
balance at the microscopic scale, they cannot be described
by equilibrium statistical mechanics. However, it is often
difficult to pinpoint precisely the signature of nonequili-
brium physics in their emerging properties. For instance,
motility-induced phase separation (MIPS), which leads to
the liquid-gas coexistence of repulsive self-propelled par-
ticles, is not associated to the emergence of steady-state
mass currents. A number of works have actually proposed
that its large scale physics can be captured by an equilib-
rium theory [4,7–9], the limits of which are heavily debated
[10–12]. Even for systems where steady currents arise, the
connection to equilibrium physics can sometimes be
maintained, as for the transition to collective motion which
amounts, for simple systems, to a liquid-gas phase tran-
sition [13,14]. More and more approaches to active matter
thus partly rely on the intuition built for equilibrium
systems [4,7,8,12,15–18].
Building a thermodynamic approach for active matter

thus first requires understanding how active systems depart
from thermal equilibrium. Insight into this question was
gained by studying how the fluctuation dissipation theorem
(FDT) breaks down in active matter [19–22]. At short time
and space scales, the persistent motion of active particles
typically precludes the existence of effective temperatures,
while at larger scales, FDTs can sometimes be recovered. In
living systems, the violation of FDT is used to characterize

the forces generated by intracellular active processes
[23–28]. The information extracted from violations of
the FDT is however rather limited and nonequilibrium
statistical mechanics offers more elaborate tools to quantify
the departure from equilibrium. In particular, the entropy
production rate quantifies the breakdown of time-reversal
symmetry, whence probing the irreversibility of the particle
trajectories [29]. Hard to compute, and even harder to
measure experimentally, it has been little studied in active
systems [30,31], hence the need for “simple but not
simpler” systems which offer a natural way to establish
theoretical frameworks.
In this Letter, we study a model system of active matter

which has recently attracted lots of interest [9,32–34].
It comprises overdamped “self-propelled” particles evolv-
ing as

_ri ¼ −μ∇iΦþ vi; ð1Þ

where i refers to the particle label, μ to their mobility, andΦ
is an interaction potential. The self-propulsion velocities vi,
rather than having fixed norms as in models of active
Brownian particles [5] (ABPs) or run-and-tumble particles
[35] (RTPs), are zero-mean persistent Gaussian noises of
correlations hviαðtÞvjβð0Þi ¼ δijδαβΓðtÞ, with greek indices
corresponding to spatial components. In the simplest of
cases, the vi’s are Ornstein-Uhlenbeck processes, solutions
of τ _vi ¼ −vi þ

ffiffiffiffiffiffiffi
2D

p
ηi, with ηi’s zero-mean unit-variance

Gaussian white noises, so that ΓðtÞ ¼ De−jtj=τ=τ. Here, D
controls the amplitude of the noise and τ its persistence
time.
Since the temporal correlations of the noise are not

matched by similar correlations for the drag, this system
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does not satisfy the standard generalization of the
Stokes-Einstein relation to systems with memory [36].
Consequently, the system is out of thermal equilibrium,
and its stationary measure is not the Boltzmann weight
PB ≡ Z−1 expð−βΦÞ. This model, to which we refer
in the following as active-Ornstein-Uhlenbeck particles
(AOUPs), shares the essential features of active systems: it
correctly reproduces the behavior of passive tracers in
bacterial baths [32,37], leads to the standard accumulation
of active particles close to confining walls [33], and shows
a shifted onset of the glass transition [34]. As for many
other self-propelled particles [21,38], the limit of vanishing
persistence time of AOUPs correspond to an equilibrium
Brownian dynamics, since vi reduces to a Gaussian
white noise.
In the following, we characterize how the AOUPs depart

from thermal equilibrium. First, we compute perturbatively
their steady state at small but finite persistence time τ.
Surprisingly, we show that the small τ limit yields a non-
Boltzmann distribution with which the particle dynamics
still respects detailed balance: the entropy production,
which we compute, can indeed be shown to vanish at order
τ. In this regime, to which we refer as effective equilibrium,
we also show that AOUPs satisfy a generalized FDT.
Finally, we close this Letter by providing an energetic
interpretation of the breakdown of detailed balance for
AOUPs.
We consider N particles, propelled by Ornstein-

Uhlenbeck processes, interacting through a potential Φ.
For illustration purposes, we use pairwise repulsive forces
in 2D

Φ¼ 1

2

X
i;j

Vðri − rjÞ; VðrÞ ¼ A exp

�
−

1

1− ðr=aÞ2
�
; ð2Þ

for which Fig. 1 shows that AOUPs exhibit motility-
induced phase separation [4,6], extending this phenomenon

beyond the reported cases of RTPs [4,22] and ABPs
[5,9,39]. Our analytical results, however, are valid beyond
this example and hold for general potentials and dimen-
sions. Introducing the velocities pi ¼ _ri and taking the time
derivative of (1) yields

τ _pi ¼ −pi − ð1þ τpk ·∇kÞ∇iΦ −
ffiffiffiffiffiffi
2T

p
ηi; ð3Þ

where the mobility μ is set to one. Here and in what follows,
repeated indices are implicitly summed over.
We have introduced T ≡D=μ so that taking τ ¼ 0 in

Eq. (3) directly maps the dynamics onto an equilibrium
overdamped Langevin equation at temperature T.
Surprisingly, there exist other equilibrium approximations
of Eq. (3). First, taking τ ¼ 0 in the rhs maps AOUPs onto
an underdamped Kramers-Langevin equation. Conversely,
taking τ ¼ 0 in the lhs corresponds to the unified colored
noise approximation [33,40] which has been shown to
satisfy detailed balance [33]. Here, we propose to deter-
mine perturbatively the steady state of AOUPs in the small
τ limit, retaining both contributions of τ in Eq. (3).
Rescaling time as t ¼ ffiffiffi

τ
p

~t and introducing the rescaled
velocities ~pi ¼

ffiffiffi
τ

p
pi, the probability distribution satisfies

the Fokker-Planck equation _Pðfri; ~pigÞ ¼ LPðfri; ~pigÞ,
where the operator L reads

L ¼ − ~piα
∂

∂riα þ
1ffiffiffi
τ

p ∂
∂ ~piα

�
~piα þ τ

∂2Φ
∂riαrjβ ~pjβ

�

þ ∂
∂ ~piα

∂Φ
∂riα þ

Tffiffiffi
τ

p ∂2

∂ ~p2
iα
: ð4Þ

In steady state, we propose the following ansatz for small τ:

P ∝ exp

�
−
Φ
T
−

~p2
i

2T
þ
X∞
n¼2

τn=2ψnðfri; ~pigÞ
�
: ð5Þ

Solving for LP ¼ 0 then leads to a consistent set of
equations at every order in

ffiffiffi
τ

p
, which recursively yield

P ∝ e−½ðΦþ ~p2
i =2Þ=T�

�
1−

τ

2T
½ð∇iΦÞ2 þ ð ~pi ·∇iÞ2Φ− 3T∇2

iΦ�

þ τ3=2

6T
ð ~pi ·∇iÞ3Φ−

τ3=2

2
ð ~pi ·∇iÞ∇2

jΦþOðτ2Þ
�
: ð6Þ

The distribution of positions can then be deduced by
integrating (6) over velocities; this leads to a Boltzmann-
like measure, PðfrigÞ ∝ expð− ~Φ=TÞ, with an effective
potential,

~Φ≡ Φþ τ½ð∇iΦÞ2=2 − T∇2
iΦ� þOðτ2Þ: ð7Þ

In the limit of vanishing τ, one recovers the standard
Maxwell-Boltzmann distribution. The joint distribution of

FIG. 1. AOUPs interacting via the potential (2) exhibit MIPS in
a 2D box of size L with periodic boundary conditions. Param-
eters: A ¼ 100, a ¼ 2, N ¼ 10000, L ¼ 250, D ¼ 100, τ ¼ 20.
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position and velocities (6) beyond this regime is our first
important result. First, it shows how, for finite τ, positions
and velocities are correlated, in agreement with the UCNA
approximation [41] but at contrast to thermal equilibrium
where the energy can be separated between kinetic and
potential parts. In particular, this leads to a modified
equipartition theorem,

h ~p2
iαi ¼ T − τhð∇iΦÞ2iB þOðτ2Þ; ð8Þ

where the average h� � �iB is taken with respect to the
Boltzmann weight PB. Second, the effective potential ~Φ
predicts that repulsive pairwise potentials lead to effective
attractive interactions, consistently with other approxima-
tion schemes [9,33]. This explains why purely repulsive
interactions can trigger MIPS. Note also how a pairwise
potential leads to effective three-body interactions through
the term ð∇iΦÞ2. At this stage, our controlled expansion
allows us to describe the static properties of AOUPs in
terms of an effective Boltzmann weight (7). Interestingly,
for the evolution operator (4), the asymmetry in ~pi of the
steady-state measure (4) implies that the dynamics is out of
equilibrium [42]. This asymmetry is not captured by the
UCNA approximation [41] which cannot describe the
nonequilibrium properties of AOUPs.
To better measure the degree of irreversibility of the

dynamics, we derive its entropy production rate σ [29]. It is
obtained by comparing the probability weights associated
with a given trajectory riðtÞ and its time-reversed counter-
part, respectively, denoted by P and PR,

σ ≡ lim
t→∞

1

t
ln

P
PR : ð9Þ

To keep the scaling in τ explicit, we work for now with the
rescaled variables ~t and ~pi and use the fact that σ is
intensive in time. Using standard path-integral formalism
[43], the trajectory weight can be written as P½frið~tÞg� ∼
expð−S½frið~tÞg�Þ with

S ¼
ffiffiffi
τ

p
4T

Z
~t

0

du

�
_~pi þ

~piffiffiffi
τ

p þ ð1þ ffiffiffi
τ

p
~pk · ∇kÞ∇iΦ

�
2

: ð10Þ

The time-reversed trajectories are then given by tR ¼ −t,
rRi ðtÞ≡ rið−tÞ. For rRi ðtÞ to be a solution of the equation of
motion (1), one then needs pR

i ðtÞ ¼ −pið−tÞ. The proba-
bility PR is then simply obtained by injecting these
expressions into (10). The entropy production rate is thus
given by σ ∼ δS=t, where δS is the difference between the
forward and backward actions [44]. All in all, the entropy
production rate reads

σ ¼ − lim
~t→∞

ffiffiffi
τ

p
T~t

Z
~t

0

duð _~pi ·∇iÞð ~pj · ∇jÞΦ

¼
ffiffiffi
τ

p
2T

hð ~pi ·∇iÞ3Φi; ð11Þ

where the last equality follows from integrating by parts
[45] and using the equality between time and ensemble
averages in steady state [46]. Interestingly, the entropy
production rate exactly vanishes when Φ is quadratic in
the particle displacements, hence showing that AOUPs are
in this case an equilibrium model. Their steady state is
however not the Boltzmann measure PB, which explains
the difficulty of defining a temperature in this case [21]. As
a result, the anharmonicity of the potential acts as a control
parameter for the nonequilibrium nature of AOUPs.
The entropy production rate can also be computed in the

small τ limit, using the stationary distribution (6) to
evaluate the correlation function appearing in Eq. (11).
Going back to the initial variables, the entropy production
rate is given by

σ ¼ Tτ2

2
hð∇i∇j∇kΦÞ2iB þOðτ3Þ: ð12Þ

The first nonvanishing contribution to σ comes from the
τ3=2 correction in the steady state measure (6). At order τ,
we thus have a non-Boltzmann steady state given by the
first line of (6), or equivalently by (7) in position space,
with a vanishing entropy production rate. In such a regime,
the AOUPs are effectively a nonthermal equilibriummodel,
which is the central result of this Letter.
Let us now discuss the practical consequences of this

effective equilibrium dynamics. Oscillatory shear experi-
ments have become an increasingly standard procedure to
sample the microrheology of active systems [23,24,47,48].
In this context, the violation of the equilibrium FDT has
proven a natural measure of the distance to equilibrium
[19,20,49]. Let us consider that an external operator
perturbs the dynamics by applying a small constant force
fj on the particle j, hence modifying the potential Φ as
Φ → Φ − fi · ri. We define the response function R as

Riαjβðt; sÞ≡ δhriαðtÞi
δfjβðsÞ

����
f¼0

: ð13Þ

Following standard procedures [50], we can use the
dynamic action formalism and the fact that δP ¼ −δS:P
to rewrite the response as

Riαjβðt; sÞ ¼ −
�
riαðtÞ

δS
δfjβðsÞ

����
f¼0

	
: ð14Þ

The perturbed dynamics of the AOUPs is readily given by
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τ _pi ¼−pi− ð1þ τpk ·∇kÞ∇iΦþ fiþ τ_fi−
ffiffiffiffiffiffi
2T

p
ηi; ð15Þ

so that the dynamical action S becomes

S ¼ 1

4T

Z
t

0

du

�

1þ τ

d
du

�
ðpi þ∇iΦ − fiÞ

�
2

: ð16Þ

The response function is then given by

Riαjβðt; sÞ ¼


1 − τ2

d2

dt2

��
−
1

T
d
dt

hriαðtÞrjβðsÞi

þ 1

2T
ðhriαðtÞ∇jβΦjt¼si − hriαðsÞ∇jβΦjtiÞ

�
:

ð17Þ

In the effective equilibrium regime, the vanishing entropy
production tells us that the dynamics is symmetric under
time reversal so that the second line of Eq. (17) vanishes
and the response function finally reads

Riαjβðt; sÞ ¼ −
1

T
d
dt
hriαðtÞrjβðsÞ þ τ2piαðtÞpjβðsÞi: ð18Þ

We have thus derived a generalized FDT, which holds in the
small τ limit where the AOUPs are effectively in equilib-
rium, though not with respect to the Boltzmann measure
PB. This explains the atypical form of the correlation
function entering, which involves the position autocorre-
lation function, as in thermal equilibrium, along with the
velocity autocorrelation function. Note that, as in equilib-
rium, this FDT is completely independent of the interaction
potential Φ, so that it should be measurable without
knowledge of the intimate details of particle interactions.
To test whether a finite τ regime exists where our

generalized FDT can indeed be measured, we consider a
perturbation Φ → Φ − fεixi, where εi is a random variable
equal to �1 with equal probability [49]. We measure the
susceptibility χðtÞ≡ R

t
0 dsRixixðt; sÞ=N in simulations of

AOUPs interacting with the repulsive potential (2). Our
modified FDT predicts that

NTχðtÞ ¼ h½xið0Þ − xiðtÞ�xiðtÞi þ τ2h½_xið0Þ − _xiðtÞ�_xiðtÞi;
ð19Þ

which is shown to be valid at small τ in Fig. 2(a). (See [51]
for simulation details).
Note that an entropy production rate σ of order τ2 means

that trajectories of length ∝ τ−2 lead to an overall entropy
production of order one. Since we are working in the small-
τ-but-finite-D limit, diffusive equilibration times l2=D
remain of order one, which legitimates the claim of an
effective equilibrium regime. Nevertheless, we expect our
FDT to break down in the long time limit. The connection
between σ and the breakdown of the FDT can be

rationalized through a simple generalization of the
Harada-Sasa relation [53,54]

σ ¼ 1

T

Z
dω
2π

ω

μ
½2TR00

iαiαðωÞ þ ωCðωÞKðωÞ�; ð20Þ

where R00ðωÞ is the imaginary part of the response in
Fourier space, KðωÞ≡ 1þ ðωτÞ2 is the inverse of the noise
correlator ΓðtÞ in Fourier space and CðtÞ≡ hriðtÞ · rið0Þi.
Interestingly, the measurement of σ through (20) no longer
requires the knowledge of the interaction potential Φ, at
variance with the use of Eq. (11).
To get more physical insight into our effective equilib-

rium regime and its breakdown as τ increases, let us now
discuss the energetics of AOUPs. Active matter is tradi-
tionally regarded as a nonequilibrium medium because
injection and dissipation of energy are uncorrelated. Indeed
the former stems from the conversion of some form of
stored energy while the latter results from the friction with
the surrounding medium. Consequently, fluctuations and
dissipations are not constrained by any form of Stokes-
Einstein relations. For driven Langevin processes, the
nonequilibrium nature of the dynamics can be measured
as a mean heat transfer between particles and thermostat
[55,56]. This leads to a standard definition of dissipation J
as the imbalance between the power injected by the thermal
noise and the one dissipated via the drag force. This
definition furthermore provides an energetic interpretation
of the entropy production since J ¼ Tσ [56]. A naive
generalization of this reasoning to AOUPs would lead to
the definition of dissipation through

J ¼ μ−1hpi · ðpi − viÞi: ð21Þ

It is however straightforward to see that J ¼
hpi ·∇iΦi ¼ dhΦi=dt, which necessarily vanishes in
steady state.

FIG. 2. Parametric plot between the susceptibility χðtÞ
and the correlation function CeffðtÞ ¼ hxiðtÞ½xiðtÞ − xið0Þ� þ
τ2 _xiðtÞ½_xiðtÞ − _xið0Þ�i for N AOUPs interacting via the potential
(2). The particles experience a stiff harmonic potential when
they try to exit a box of linear size L. Parameters: L ¼ 30,
N ¼ 720, τ ¼ 0.01, A ¼ 20. Blue, red, and cyan dots correspond
to T ¼ 2, 1, 0.25 and the solid line correspond to the theoretical
prediction (19).
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The breakdown of detailed balance for AOUPs is indeed
not linked to a mean heat flux extracted from an equili-
brated bath but from the apparent lack of generalized FDT
between damping and fluctuations in (1). To get more
insight on the entropy production rate σ, we remark that this
dynamics is equivalent to

K � _ri ¼ ξi − μK �∇iΦ; ð22Þ

where KðtÞ ¼ ½1 − τ2ðd=dtÞ2�δðtÞ, � denotes time convo-
lution, and we have introduced the noise term ξi ≡ K � vi.
The lhs of (22) corresponds to the damping of a viscoelastic
fluid with memory kernel K. The first term on the rhs is a
fluctuating force whose variance is

hξiαðtÞξjβð0Þi ¼ δijδαβKðtÞ; ð23Þ

since by definition ðK � ΓÞðtÞ ¼ δðtÞ. The damping and
fluctuating forces appearing in (22) thus satisfy a gener-
alized Stokes-Einstein relation [36]. They correspond to the
connection of particles with an equilibrated viscoelastic
bath, for which the standard definition of the dissipation
applies

J ¼ μ−1hpi · ðK � pi − ξiÞi: ð24Þ

From there, simple algebra shows that J ¼ Tσ, which
yields a physical interpretation to σ as the dissipation in an
equilibrated bath for the dynamics (22).
Interestingly, this shows that the breakdown of detailed

balance in AOUPs can be seen equivalently as resulting
from a lack of generalized Stokes-Einstein relation between
damping and fluctuations or from the fact that K �∇iΦ is
not a conservative force. In this second interpretation, the
entropy production rate now has a standard energetic
interpretation. The existence of an effective equilibrium
regime for small τ is then due to the fact that K �∇iΦ
behaves as a conservative force ∇i

~Φ in this limit. The
dynamics (22) with K �∇iΦ replaced by ∇i

~Φ can be
regarded as a dynamical equilibrium approximation of
AOUPs; one indeed checks, for instance, that h ~Φi−hK �
Φi¼Oðτ2Þ or that our generalized FDT corresponds to
perturbing this equilibrium dynamics as ~Φ → ~Φ − ri·
ðK � fiÞ.
In this Letter, we have thus shown that, as their

persistence time increases, active Ornstein-Uhlenbeck
particles do not immediately leave the realm of
equilibrium physics. At short persistent time, they behave
as an equilibrated viscoelastic medium with effective
Boltzmann weight P ∝ expð− ~Φ=TÞ which differs from
the thermal equilibrium PB ∝ expð−Φ=TÞ. In this regime,
the fact that repulsive forces lead to effective attractive
interactions can directly be read in ~Φ. Beyond this static
result, the existence of an effective equilibrium regime

enforces a generalized fluctuation dissipation theorem, akin
to its thermal counterpart though different correlators are
involved. The breakdown of this FDT for larger persistence
times can be linked to a nonzero entropy production rate
whose expression we have computed analytically. Last, we
have shown how to extend the notion of dissipation to
understand the breakdown of detailed balance in AOUPs.
Most of the results presented in this Letter have been

derived for the particular choice of noise correlator
ΓðtÞ ¼ De−jtj=τ=τ. Many of our results, such as Eq. (20)
or the discussion on dissipation, however extends to more
general correlators. Furthermore, it has recently been
shown that static approximations derived for the steady
state of AOUPs capture very well the physics of ABPs [9].
It would thus be very interesting to know whether our
effective equilibrium regime also extends to this system.
More generally, our study suggests that when systems are
driven out of thermal equilibrium by the conversion of
some form of stored energy, an effective equilibrium
regime may remain when the drive is moderate. This
would be a first step towards a thermodynamics of active
matter.
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