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We study the statistical properties of active Ornstein-Uhlenbeck particles (AOUPs). In this simplest of models,
the Gaussian white noise of overdamped Brownian colloids is replaced by a Gaussian colored noise. This
suffices to grant this system the hallmark properties of active matter, while still allowing for analytical progress.
We study in detail the steady-state distribution of AOUPs in the small persistence time limit and for spatially
varying activity. At the collective level, we show AOUPs to experience motility-induced phase separation both
in the presence of pairwise forces or due to quorum-sensing interactions. We characterize both the instability
mechanism leading to phase separation and the resulting phase coexistence. We probe how, in the stationary
state, AOUPs depart from their thermal equilibrium limit by investigating the emergence of ratchet currents
and entropy production. In the small persistence time limit, we show how fluctuation-dissipation relations are
recovered. Finally, we discuss how the emerging properties of AOUPs can be characterized from the dynamics

of their collective modes.
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I. INTRODUCTION

The hallmark of activity is the lack of connection at the
microscopic scale between the injection of energy and its
dissipation. While the latter is provided by the environment
which, like for an equilibrium colloidal particle, can be an
equilibrated liquid, the former arises from the consumption of
an independent energy source, whose origin varies from sys-
tems to systems. In biology, energy injection typically results
from the hydrolysis of adenosine triphosphate (ATP), which
drives almost all biological processes such as cell motion [1,2]
or intracellular trafficking [3,4]. Synthetic active particles, on
the other hand, have been powered using a large range of
external sources, whose natures range from chemical [5-7]
to electrical [8—11] to mechanical [12-14].

At a theoretical level, the modeling of active systems
has been equally diverse, starting either at a coarse-grained,
phenomenological level [15-18] or directly at the micro-
scopic scale, using various models of self-propelled particles
[19-22]. In the latter case, the standard dynamics of N self-
propelled particles typically writes, ignoring inertial effects,
as

r=—uvV,®+v, (D

where r; describes the position of particle i, v; its self-
propulsion velocity, p the particle mobility, and we have
included a putative interaction potential ®(ry, ..., ry). The
type of active particles is then specified by the properties
of their self-propulsions v;. The most studied examples are
probably run-and-tumble particles (RTPs) [23] and active
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Brownian particles (ABPs) [24], for which v; has a con-
stant modulus and reorient either stochastically at a given
rate for RTPs or following rotational diffusion for ABPs.
These microscopic models and their variants have led to a
wealth of surprising behaviors, among which the accumula-
tion at hard boundaries [25,26], the generation of currents
by asymmetric obstacles [26-31], the emergence of collec-
tive motion [19,32], and motility-induced phase separation
(MIPS) [24,33,34].

Whatever the microscopic nonequilibrium origin of self-
propulsion, these rich behaviors would be impossible if the
v;’s were well described by Gaussian white noises, which
would make Eq. (1) an equilibrium dynamics. ABPs and RTPs
differ from this simpler case by both the non-Gaussian nature
and the persistence of their self-propulsion. Over the past few
years, a desire to pinpoint the fundamentals of active matter
has led to study simplified models, in which only the non-
Gaussian nature [35] or the persistence [36—46] is retained. In
this article, we consider the latter case, referred to as active
Ornstein-Uhlenbeck particles (AOUPs), which, aside from
their theoretical motivations, have also been used to model the
motion of passive tracers in an active bath of bacteria [30,47]
as well as for the collective dynamics of cells [48,49].

The self-propulsion velocities of AOUPs are given by N
independent Ornstein-Uhlenbeck processes:

TV, = —V; + (2D)1/277,'7 2

where {n,;} forms a set of zero-mean Gaussian white noises
with correlations (9, (£)1;8(t')) = 8;j84p8(t — t'), with Greek
indices running over spatial dimensions. It follows that {v;}
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forms a set of zero-mean colored Gaussian noises with
correlations

(Via (V5 (0)) = &; saﬂ—ef"'/i 3)

where D controls the noise amplitude, and t quantifies
the noise persistence. In the limit of vanishing 7, the self-
propulsion velocities v; reduce to Gaussian white noises of
correlation (v (1)v;g(s)) = 8;;84p2D3(t — s). For finite T, on
the contrary, the temporal correlations of the “active noise” v;
are not matched by a corresponding memory kernel for the in-
stantaneous damping y = !, so that Eq. (1) does not satisfy
a FDT of the second kind: it describes a nonthermal process
[50]. The correlation time t hence controls the nonequilibrium
properties of the dynamics.

In this article, we study AOUPs both at single-particle and
collective levels, and we characterize their static properties as
well as their nonequilibrium dynamical features. In Sec. II,
we first discuss various limiting cases in which the steady-
state distributions of AOUPs can be computed analytically.
We discuss in particular the small-persistence-time regime, as
well as the impact of nonuniform persistence and activity on
the spatial distribution of particles. In Sec. III, we show that
AOUPs can undergo MIPS, both in the presence of pairwise
purely repulsive forces and due to quorum-sensing interac-
tions if the typical velocity /D/t is a sufficiently strongly
decreasing function of the local particle density. In Sec. 1V,
we then turn to characterize dynamically the departure from
equilibrium of AOUPs. We first consider the occurrence of
particle currents in the presence of ratchet potentials and
we then fully characterize the breakdown of time-reversal
symmetry. At linear order in v, we show AOUPs to admit
an effective, non-Boltzmann equilibrium regime, which we
characterize dynamically in Sec. V by deriving the corre-
sponding generalized fluctuation-dissipation theorem (FDT).
Finally, we discuss in Sec. VI the explicit coarse graining of
N interacting AOUPs by constructing the dynamics of their
collective modes. Note that Secs. II A, IVB, and V A corre-
spond to detailed presentations of results announced in [41]
while Sec. IIC is a short review on the application of UCNA
and Fox theory to AOUPs. All other sections correspond to
new material.

II. STEADY-STATE DISTRIBUTION

This section is devoted to the analytical characterization of
the stationary distribution of AOUPs. We begin in Sec. II A
with the short-persistent-time regime, which has attracted a
lot of interest recently [37,38,40-46,51]. We present an ex-
pansion to second order in T and show in Sec. II B how, for a
single degree of freedom, it can be extended to higher order.
The gap with standard methods developed to characterize the
steady state of particles powered by Gaussian colored noises
[52-55] is then bridged in Sec. II C. Finally, the steady state
of AOUPs with spatially varying activity and persistence is
discussed in Sec. IID. Note that Secs. Il A-II C are detailed
derivations of the results presented in [41], especially for the
steady-state distribution (18), and discussions of these results
with respect to the existing literature; their content is mostly

technical and they can be omitted during a first reading of the
article.

A. Systematic perturbative derivation

Let us start by introducing the particle velocities p; = r; to
recast the dynamics of N interacting AOUPS into

;= —pi— (1 +1p;- V)Vi®+2D)*n. (4

where the mobility has been set to unity. Setting T = 0 in both
sides of Eq. (4) leads to the standard overdamped equilibrium
dynamics:

pi = —V,® + (2D)"/*y,. ®)

Note that setting v =0 only in the right-hand side of
Eq. (4) also leads to an equilibrium process: the underdamped
Kramers equation. More surprisingly, setting T = 0 in the left-
hand side of Eq. (4) also leads to an equilibrium dynamics,
albeit with nontrivial mobility and effective potential [37].
This path will be detailed in Sec. IIC and we now discuss
how a small t expansion of (4) can instead be systematically
derived.

Here we follow the treatment introduced in [41] which
works with the {r;, p;} variables. In the spirit of [54,56], we
first introduce the scaled variables 7 = t~!/%¢ and p; = p;t'/2.
As aresult, the stationary distribution satisfies LPs({r;, p;}) =
0, where the operator £ reads as

3 (. g HRI
i Tpj
0Pia P Pis 0riatjp

d 0P ~1p a2
— +D'L' Pyt
0Pig iy ops,

L=—pi Vit

(6

Here, and in the following, summations over repeated indices
are implicit. (This includes terms like p; or T ) To compute
the stationary distribution, we propose the followmg ansatz:

_2 &9} "
Ps(r.p) ~ e b (1 + Y T A, p)), @)
n=2
where, for convenience, we define Ag = 1 and A; = 0, and we
introduce the notation r = {r;}, p = {p;}, which lightens the
notations in the many-particle case. Note that, for normaliza-

52
P — . .
tion purposes, [ e~ b~ 2 A, dpdr has to vanish. We then obtain

a set of recursive equations for the A, equating every order in
1/2.
!/

ad 92 _
<Pza T Dﬁ)l‘ln = fu(r, p), ®
where
_ _ 0A,_ AP 9A,_; 3’P
Ja(x,p) = _piam + FTrr + %An_z
Dia P i o _ 2D A,
- p,#m&hz + Piam Hﬁjﬁz .

&)

Inspection of (8) suggests an ansatz for the A, in the form
of degree-n polynomials in the momenta. [If this is assumed
for A; with k < n, then A,y; is a polynomial of degree
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(n+ 1).] It can be also checked that A,, contains only even
terms in the momenta and A,,;; only odd ones. This re-
sults from the symmetry of the equation £LPs = 0 under the

transformation {t'/2, p} — —{r'/?, p}. We use the following
notation:
(n,n)
Ay = ﬁilaal e 'ﬁinvan l]w”lml:lw.’a”
n!
+ B = al(lnyirfiinzf)z,al.wanfz 4. (10)
Pivai + -+ Pip g, n—2)! )

where the a™™’s depend on the particles’ positions. Note that
A, contains a p-independent term a"? only if n is even. Note
also that (10) is a local function of the momenta, which could
be restrictive, but still allow for nonlocal dependence on the
particle positions, something known to be important for active
particles [57,58].

Plugging the expression (10) for A, in (8), and equating
order by order in p, yields explicit expressions of all tensors
a®™™m for 0 < m < n. For even n, this leaves a™? uncon-
strained (whereas a®**+1:9) = 0 by definition) but constrains
a9 For instance, we get, forn = 2, 3, 4,

(i - Vi)*®
Ay = =P a0 (), an
(i V) 2
Ay=—pp—+ (Pi - ViV; @
1 )
~5p @i V(V;®)* — (p; - Vi)a®?, (12)
_ _ (i - V)'ie
Ay = —[(p; - VO)*RI[(P; - V) > P] — ————
4 8D2 [(P ) ][(p] j) ] 2D
p;-V,; 2[a%0 — V2 3 0 0
(P Vila 12 (B ViV @
2 4D 8rm ar_,-,a
L 3[(1_31 ) Vj)qD] 3[(I_’k . Vk)cb] + a(4,()). (13)

2D 3}"5’(1 ari,ot

The lowest order in p of Eq. (8) for A, of the form (10) also
yields

2 9D 9
(n—2,0) __
(Dar}a B 0Fig 3ria>a = 8w (14

where g, are functions of the particle positions which can be
computed explicitly. Finding a solution to (14) thus provides
a closed expression for the expansion up to order n — 2.

From the Fredholm alternative theorem, the condition un-
der which (14) admits a solution, and the expansion can be
carried out, is that g, is orthogonal to e~®/? [59]. This is
always possible in the small D limit, following [60], but the
existence of solution to arbitrary order remains, in the general
case, an open problem. Here, we show that it can be carried
out explicitly up to order t3/2. g4 indeed reads as

1 %0 0 9d 5 %D 9d
- D Brmarjﬂ 8r,~a ar_,ﬂ 2 82r,~,18r_,-ﬂ Br_,-ﬂ
92 92 3D 9o

2 azrmazrjﬁ

84

- (15)
ar,-o,é)rj,g 3ria8rjlg

and (14) is solved, for n = 2, by

1 3
@0 = — —(V,0)* + ZV/. 16
a oo Vi®)y + oV (16)
This yields the following expression for the stationary mea-

sure of N interacting AOUPs, valid up to order 732,

2
Po~ep {1 - %[(Vﬁb)z +(Pi - V120 — 3DV20]
o2 = 2 2 2
+ 5([’1‘ - V)[(@; - V;)* —3DV;|® 4+ 0(x?) .

a7
The velocity distribution obtained by integrating over the
particle position is Gaussian to first order in t, with the
same variance as in [61], obtained within the unified colored-
noise approximation (UCNA) framework that we discuss in
Sec. I1C. However, the t3/%2 order shows that the velocity
distribution is non-Gaussian to this order.
Integrating over velocities, we obtain the many-body
marginal distribution, in position space, Ps({r;}):

Ps({r;}) ~ exp [—9 — iD(V,~<1>)2 + TV + 0(12)}.

D 2

(18)
We can now use expression (18) to define an effective poten-
tial through @ = —D In Ps({r;}) which provides an intuitive
picture of how self-propulsion affects the bare steady state
exp(—®/D). The correction term 7(V;®)?/2 is always pos-
itive, irrespective of the repulsive or attractive nature of the
force —V;®: it drives particles away from regions of large
forces. The second correction term —DtV?® is dominant
for large values of D and can take either sign. It favors the
presence of particles in convex potential landscapes. When
the bare potential describes pairwise interactions, the corre-
sponding effective potential contains three-body interactions
stemming from the term 7(V;®)?/2. Moreover, when ® cor-
responds to repulsive interactions only, the associated @
combines repulsive and attractive interactions [38,40]. This
captures how self-propulsion produces attractive effects out of
repulsive forces, consistently with the enhanced tendency to-
wards clustering reported experimentally for various colloidal
systems [62-66].

It is interesting to note that similar functional forms to (17)
and (18) are encountered in many contexts, from the semi-
classical expansion of the Boltzmann distribution in powers
of 7i [67] to the Hermitian form of the Fokker-Planck operator
[68]. It would be interesting to know whether this is just a
coincidence or reflects the presence of a deeper connection.

B. One particle in one dimension

The systematic perturbative expansion presented in Sec. II
can be carried out to any order in 7 in the case of a single
AOUP particle in d =1 for an arbitrary smooth external
potential ® in an infinite space. In this case, the solvability
conditions (14) admit a solution to arbitrary order n, explicitly
given by

1 r Y y -
a" 20y = _/ dye*%f dze%gn(z), (19)
Z 0 0
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where Z is a constant to be fixed by the normalization of the
stationary measure. In this case, the solution can be obtained
iteratively to arbitrary order, at the cost of expressions of in-
creasing complexity. The result of this procedure is illustrated
in Appendix A where we give the full stationary distribution
Ps(r, p) up to order 72. Once the velocity is integrated out, we

find
i~ ) o ' (r)>
s (1) exp[—5+t( (r)— ) )
L, (DOD(r) [T ()PP (y)dy
! < 2 ° 2D

/" 2
—o(ned() - 2 ir) ) + 0(13)i|,

where ®™ refers to the nth-order derivative of ®. Interest-
ingly, this result is compatible with a recent, instanton-based
derivation of the steady state of AOUPs obtained sending
D — 0 before taking the T — 0 limit [69]. [Naturally, in this
limit, only the terms proportional to D~! in Eq. (20) survive.]

The case with periodic boundary condition is discussed
in Appendix A. Furthermore, the perturbation expansion can
also be generalized to the case of one particle in a central
potential in arbitrary dimension, as well as to the case of two
interacting particles with central forces. (We leave these cases
to future works.)

Let us take advantage of working in a simpler, one-
dimensional context to address more subtle questions regard-
ing the nature of our small /T expansion (7). It is for instance
natural to ask whether this series admits a finite convergence
radius in 7. Equation (7) indeed implicitly assumes that Ps
is analytic in /T which need not necessarily hold for any
potential.

To address this question, we consider the potential ®(x) =
x* /4, at fixed D and for two different values of 7, and consider
the marginal in space of the full distribution:

Ps(r) =Y A,(n1", (20)

where A,(r) = [ dvAy(r,v)exp{—5[p(x) + %2]} and A,,
is defined in (7). Truncating this series at order %, we
show in Fig. 1(a) that the truncation seems well behaved
for T =0.01, yielding a precise quantitative agreement
with the stationary distribution obtained numerically. Note
that the distribution develops symmetric humps which high-
light the non-Boltzmann nature of the stationary state. For t =
0.2, Fig 1(c) shows that successive orders of the expansion are
typical of an asymptotic series: each order in T contributes a
larger amount than the previous one with large positive and
negative oscillations. This need not mean that the full series
fails at capturing the steady state, but simply that finite sums
yield poor approximations of the full series. An alternative
procedure to estimate a series out of the asymptotic series of
partial sums is to use Borel resummation. To do so, we use
the method of Pade approximants. We begin by introducing
the Borel transformed series

N —_
By(r,T) = ZMI” 1)

n!
n=0

0.5 0.5
Py(r) (a) Py(r) (b)
— order 3 — order 3
— order 4 — order 4
order 5 order 5
— order 6 — order 6
° numerics T ° numerics r
0.0 T T T 0.0 T T T
—2 -1 0 1 2 —2 -1 0 1 2
0.5 0.5
P e, ool | (e Py(r) (d)
—lorder
P brder 4 — ucna
—|prder — order 8
P ° [humefjcs ° numerics r
0.0 += T <=1 0.0 T T T

-2 -1 0 1 2 -2 -1 0 1 2

FIG. 1. Steady-state distribution of an AOUP in a confining po-
tential ®(x) = x4/4. Top: For t = 0.01, the series (20) converges
rapidly and coincides with the numerics. The latter are obtained by
integrating Eqs. (1) and (2) using the Heun algorithm (see [70] for
detail). (a) The truncated Borel also describes correctly the data (b).
Bottom: For 7 = 0.2, the series (20) is rapidly diverging and very
far from the numerics (c). On the contrary, the truncated Borel sum
describes very well the data (d).

and we approximate By as rational fractions Py(r,7) =
Ov(nt) \where Qy and Ry are polynomials in /7 of order N

Ry(r,T)?

such that Py and By coincide up to order V. The series (20)
can then be evaluated as the limit as N — oo of Py(r, 7) =
fooo dtPy(r, tt)e™", which is called the Borel resummation of
the series (20) [71]. We first show in Fig. 1(b) that, when
the series (20) is well approximated by its partial sum, it
is (reassuringly) also well described by its truncated Borel
sum. More interestingly, for 7 = 0.2, when the partial sums
seem to diverge, the Borel resummation of (20) still agrees
quantitatively with numerical estimates of the steady-state
distribution, as shown in Fig. 1(d).

C. Approximate dynamics: Unified colored noise
and Fox approximations

Approximate treatments of the dynamics (4) have been
proposed in the past, based on schemes initially developed
for noninteracting particles. They are usually referred to as
the unified colored-noise approximation (UCNA) [54,55] and
the Fox theory [52,53]. These approximations were first mo-
tivated by the description of the fluctuations of the radiation
in the dye laser [55,72]. They have, in particular, been used
to determine approximations of the stationary distribution of
dynamics (4) and of mean first-passage times [73-76].

The UCNA consists in neglecting the left-hand side in
Eq. (4):

Mia.jpFip = —0ia® 4 (2D)'* i, (22)
where 0,, = d/0dr;y, and we have introduced the tensor
My, jp = 8ij8up +r8 dD As a result, the dynamics is
now Markovian for the partlcle positions, at the cost of a
position-dependent damping matrix M. The derivation of
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Eq. (22) yields an equation which is to be understood with the
Stratonovich convention [76]. It follows that the associated
Fokker-Planck equation for P({r;}, t) reads as

—1 _

atP - aw‘ (PMlCt iB 1/3 CD) + Daia [Mia,jﬂ ak}’ (Mky iB )] (23)
where M~! denotes the inverse of M. A simple derivation
of the corresponding stationary distribution is detailed in Ap-
pendix B, and leads to [37,61]

o 2
Ps({r;}) ~ exp |:—— - (2D ) i||detM|. (24)

D
The stationary distribution differs from the equilibrium Boltz-
mann distribution e~®/?, which is recovered in the T — 0
limit. The distribution (24) can be simplified to yield (18),
showing it to coincide with our perturbative treatment to
first order in t. Note, however, that Appendix B shows that
UCNA maps the AOUPs dynamics onto an equilibrium one,
satisfying detailed balance with respect to the steady-state
distribution (24). As such, it will be unable to capture any
nonequilibrium dynamical effects, from the emergence of cur-
rents in ratchet potentials to nonvanishing entropy production.
The Fox theory uses projection methods to derive an
approximate Fokker-Planck description of the dynamics of
AOUPs [73,77]. In the spirit of this approach, we show in
Appendix B that the approximate Fokker-Planck equation of
N interacting AOUPs reads as, within the framework of Fox
theory,

1
az = aza(PazacD) + Daza ,JjB (Mla JjB ) (25)

Note that this Fokker-Planck equation differs from that of
[40], as commented by [78]. Again, both (25) and [40]
approximate the dynamics of AOUPs by equilibrium pro-
cesses, albeit with different space-dependent mobilities and
diffusivities.

Comparing (25) with the UCNA (23) show both Fokker-
Planck equations to share the same probability currents up to
a multiplicative factor given by M~!. These two approxima-
tions thus yield the same stationary distribution (24), which
agrees quantitatively with our perturbative result to first order
in 7. However, both Fox and UCNA fail beyond this order.
This may be seen directly by considering the order 72 for a
particle in one dimension, for which UCNA and Fox predict

2 (D// 2
rpr - T2 (2 ) +0(r2):|

(26)

® ')’
Ps({r:}) ~ exp [—5 - T(w)

which differs from our systematic derivation presented in
Sec. I B. Finally, we stress again that these approximation
schemes both map the dynamics of AOUPs onto equilibrium
ones and are thus unable to capture genuine nonequilibrium
effects, unlike, as shown in Sec. IV, the expansion presented
in Sec. IT A.

D. Spatially varying activity

A marked difference between active and passive particles
is that kinetic parameters, like the particle mobility, do not im-
pact the steady-state distribution of passive particles, whereas
they generically matter for active particles. The prototypical

example is that of a spatially dependent propulsion speed
v(r), which leads to a nonuniform distribution Py (r) o< 5 (r) for
RTPs [23,33] and ABPs [33]. This result can be directly gen-
eralized to all self-propelled particles with spatially varying
self-propulsion speeds and isotropic Markovian reorientation
dynamics, whose master equation reads as [79]

o, P(r,0)=—-V - [v(r)u@)P(r, )] + OP(r, 0), (27)
where 0 is a d — 1 angular vector parametrizing the d — 1
sphere in d spatial dimensions, u(f) the corresponding unit
vector, and ® is the operator accounting for the reorientation
dynamics. Any isotropic reorientation process admits a uni-
form distribution over the sphere as a steady state. Up to nor-
malization issue, P(r, #) (r) is thus a steady-state solution

of (27), which leads to a marginal in space P(r) W Note
that this accumulation in slow regions remains valid in the
presence of translational diffusion, but the precise form of the
steady state now depends on the reorientation dynamics [34].
How this result generalizes to more complex dynamics of
the self-propulsion velocity remains an open question. As we
show below, AOUPs with position dependent t(r) and D(r)
also generically have nonuniform steady states, which we
characterize. We consider the following dynamics:

F=v 28
t(r)v=—-v+ (25)

2D(r)n,

where 7(r) and D(r) are positive functions. The correspond-
ing master equation for the probability density P(r, v;t) is
given by

v D
9P(r.vit) = —V - (VP)+ V, - (;P + ﬁvvp). (29)

Interestingly, introducing y =t~ and T = ; maps this
problem onto the dynamics of colloidal particles with in-
homogeneous temperature and damping, a problem which
has attracted a lot of attention in the past [80-85]. It is
then a simple exercise to check that varying 7(r) and D(r)
while keeping T = D/t uniform leads to a Maxwellian steady
state Py(r, v) & exp(—%) and hence to a uniform distribu-
tion in position space Py(r). Under more general conditions,
and somewhat surprisingly, Eq. (29) does not seem to admit
simple steady-state solutions. As we show next, for slowly
varying 7(r) and D(r), one can nevertheless show the steady-
state distribution to be given by Py(r) o< 1/T(r) = t(r)/D(r).
Integrating (29) over v leads to the continuity equation

oP(r,t)=—-V-j,t), (30)

with j(r, ) = fdv vP(r, v). Multiplying (29) by v and inte-
grating over v then leads to

dj(r, 1) ==V -q(r,1) - TJ(I‘ 1), €19

where g = f dv(v ® v)P(r, v) is a second-order tensor char-
acterizing the local orientation field. Finally, the dynamics of
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FIG. 2. Steady-state distributions of AOUPs evolving in 1D with
D=1 and t(x) =1+ ¢ cos(4mx/L) (blue crosses) and with t =
1 and D = [1 + ¢ cos(dmwx/L)]~! (red circles), compared with the
theoretical prediction (36) (black line). Parameters: L = 40, ¢ = 0.1

g is given by
= = 25 (I‘, t)
0dap (1) =~V X yup(r, 1) — #
2D(r)P(r)8qp 32
7(r)? ’

where f = f dv(v® v ® Vv)P(r,v) is a third-order tensor.
As long as 7(r) is bounded, the fields g(r) and j(r) are
slaved to the density P(r) for timescales ¢ >> max[7(r)]. On
such timescales, assuming small gradients of D(r) and 7(r),
Eq. (32) leads to

D(r)

g =—2P(r) V).
Gap(r,1) ) (r)dup + O(V) (33)
In turn, this shows the local current to take the form
. D(r) 2
jr,t)=—-t(r)V mP(r) + O(V9). (34)

Finally, this leads, to second order in gradient, to a diffusive
dynamics for P(r):

D(r)
oP(r,t)=V- [r(r)V (—P(r, t))}. (35

T(r)
Up to normalization issues, the steady state is then given by
r 1
Peyoc 2 L (36)
D) T(r)

Note that, in this approximation, the current j vanishes in the
steady state and g is uniform in space: the spatial variations of
the statistics of v are compensated by those of P(r). Equation
(36) is illustrated numerically in Fig. 2. Equation (35) also
shows that, on the timescales and space scales relevant to
the fast variable treatments and to the gradient expansion,
AOUPs evolving with dynamics (28) are equivalent to passive

particles evolving under an Itdo-Langevin dynamics
r =D()V logt(r) + +/2D(r)7y. 37

Note that, without any approximation, Eq. (31) shows
that, in the steady state, a spatially asymmetric periodic

modulation of D(r) and t(r) along one space direction
cannot lead to a nonvanishing current. Consider indeed one-
dimensional modulations of D(r) and t(r) along, say, the x
direction. Equation (30) shows the current to be uniform in
the steady state j(x) = ju,. By symmetry, Eq. (31) becomes
in steady state

—0:q,, = j. (38)

T(x)
Integrating over one spatial period then leads to j = 0 since
771(x) > 0 and g,, is periodic. This is a surprising exception
to the ratchet physics: breaking space and time symmetry may
in more general cases lead to a vanishing current. Note that
this extends to colloidal particles: an asymmetric modulation
of the temperature along a single space direction does not
lead to a steady current [80]. We stress that these results hold
for noninteracting particles; pairwise forces may alter this
conclusion, both for active [86] and passive particles [80].

III. MOTILITY-INDUCED PHASE SEPARATION

Motility-induced phase separation is a collective phe-
nomenon observed in self-propelled particles whose self-
propulsion is hindered at high density. The particles undergo a
phase separation leading to the emergence of dense phases in
the absence of attractive forces, at odds with the requirements
for the emergence of cohesive phases in passive systems.
MIPS has been reported in experiments on self-propelled col-
loids [10,64] and bacteria [87], where it led to a coexistence
between dense arrested phases and a dilute, active, disordered
gas. More recently, MIPS has been reported in a polar liquid
[66] where a slowdown at high density led to the emergence
of a dense macroscopic phase, which is reminiscent of traffic-
jam physics [88-90].

Self-propelled particles with persistent, non-Gaussian
noises have been shown to undergo MIPS when interacting via
purely repulsive pairwise forces [24,64,91-93]. The resulting
phase separation shares similarities with the one observed for
particles interacting via quorum sensing, whose swimming
speed depends on (and decreases with) the local density of
particles [33,79,94]. These systems nevertheless display inter-
esting differences in their mechanical and thermodynamical
properties [58,95], in particular regarding the internal struc-
ture of the liquid phase [96-98]. A similar phase-separation
scenario has been reported for AOUPs interacting via pairwise
repulsive forces [41,99], as well as for resembling kinetic
Monte Carlo dynamics [100,101]. This further highlights that,
despite their simplicity, AOUPs retain the qualitative features
of self-propelled particles at the level of collective dynamics,
as was established, for instance, for the transition to collective
motion [102]. In this section, we bring our knowledge on
MIPS in AOUPs up to par with their non-Gaussian counter-
parts.

We derive in Sec. III A the collective hydrodynamics of N
AOUPs interacting via pairwise repulsive forces and analyze
MIPS in this context. We highlight the similarities with the
case of non-Gaussian active particles. In particular, we show
that the dynamics of the density field is driven by the diver-
gence of a generalized stress tensor. Its scaling analysis can
then be used to predict a linear instability at large enough
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FIG. 3. Simulations of N AOUPs evolving with dynamics (40) and (41) and interacting via potential (39) in a 400 x 400 domain with
periodic boundary conditions. Parameters: D = 10, ¢ = ry = p = 1. In (a) and (b), snapshots taken after a time # = 10 000 show the occurrence
of motility-induced phase separation for T = 90. The average densities are py = 0.5 and py = 0.9, respectively. Varying the overall density
alters the size of the dense and dilute phases, but leaves their respective density unchanged. This can be seen from (c), which presents histograms
of the local density measured in boxes of size 10 x 10. The three curves correspond to py = 0.50, 0.70, 0.90. Finally, the phase diagram shown
in (d) is obtained by measuring the densities of the dilute and dense phases in simulations with an average density 0.9 and different values of
7. The densities are estimated from the maxima of histograms obtained as in (c).

persistence, which arises from the decrease of the flux of
“active impulse,” a concept introduced in [103] and discussed
in Sec. Il A1, as the local density of particles increases.
Furthermore, an equation of state for the pressure of AOUPs
interacting via pairwise forces can be established. Finally, as
for ABPs and RTPs [64,95,104—107], a first-principles theory
of the phase diagram of AOUPs interacting via pairwise forces
remains an open problem. We then show in Sec. IIIB that
AOUPs can also undergo MIPS due to quorum-sensing in-
teractions, when the latter make their persistence times t and
noise amplitude D depend on the local density of particles.
In practice, MIPS is seen when D/t decreases sufficiently
rapidly as the local density of particles increases.

A. Pairwise repulsive forces

We consider N AOUPs interacting via purely repulsive
forces f;; = —V,;V(r; —r;), where V is a pairwise Weeks-
Chandler-Andersen (WCA) potential given by

12 6
—r—rh=e| () —(2) [+2
vy =In rj|)_8|:<rij) ("ij>:|+4’ <

when 7;; < 2!/6ry and V = 0 otherwise. The dynamics of the
system reads as

f=vit ) fi, (40)
J
‘L""i = —Vi+\/2D11i. (41)

For large enough t, MIPS is observed and particles self-
organize into dense arrested clusters which coexist with a
dilute active gas (see Fig. 3).

1. Hydrodynamic equations and generalized stress tensor

To account for the underlying linear instability, we derive
a hydrodynamic equation for the density field p(r, ¢), defined
as

N
p(r, 1) = (p(r,1)) with i)(l‘,t)=z3[r—ri(t)], (42)

i=1

where the average is taken with respect to the realization of
the microscopic noises 3;. Following step by step the path
laid out in [95] for ABPs, and thus omitting technical details,
one finds that the dynamics of the density field is driven by
the divergence of a current, which is given in terms of the
divergence of a local “stress tensor” o':

p==-V-J, J=uv-.o. (43)

(The mechanical interpretation of o is discussed in
Sec. IIT A 3.) In noise-free, overdamped systems like the one
considered here, the current in Eq. (43) is simply the par-
ticle mobility multiplied by the local force density. It may
thus come as a surprise that the latter can be written as the
divergence of a local tensor, despite the active, momentum-
nonconserving nature of the particles.

Let us first note that the stress tensor can be split between
an active and a passive part:

o= O,acl +O‘IK. (44)

The contribution of the pairwise forces to the stress tensor
is captured by o' (r), which was introduced by Irving and
Kirkwood [108], and whose divergence is the local force
density exerted at position r:

o) = %/dr’{ (r = ra(r — 1) dV(Ir —r'l)

r—1'| dlr —r’|

1
x/ dx(,s[r+(1—x)r/]f)(r—xr/))}. (45)
0

This formula can be derived by symmetrizing the force
density Zi# ViV —r)) = 1/221.#[V,-V(r,'—rj)—
V,;V(r; — r;)] and using that [109,110]

S —r;)—d8(r—rj)
1
=-V,- [(r,- — rj)/ dA8[r —r; + A(r; — rj)]}. (46)
0

[This equality can be checked by series expanding in pow-
ers of A and integrating over A, which rebuilds the Taylor
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expansion of §(r — r;) — 8(r — r; +r; — r;) in powers of r; —
r;.] Note that, in a system translationally invariant along
y, o¥(r) simply measures the force density along x ex-
erted across an interface located at position r, which endows
Eq. (45) with a more direct physical interpretation.

The second contribution to the stress tensor o®'(r) is de-
fined from

V. o) = <Z %8(1‘ — ri)>. (47)

i

Following again the path laid out in [95] then leads to

O_act(r) = <Z%|:V,+p,2fu:|8(r—r,)> (48)

i J#i

. VT
= <Zri—8(r—ri)>. (49)
"

i

Equation (49) provides a simple interpretation to o*'(r): An
AOUP whose self-propulsion force is v;/u at time ¢ receives
an average momentum tv;/u from the substrate in the future,
called its “active impulse” [103]. The underlying physical
picture is that the active impulse measures the active force
“stock” of the particles. In Eq. (49), 0! (r) thus measures the
flux of active impulse through the medium due to the motion
of the particles, much like for ABPs and RTPs [103]. Equation
(47) then expresses that any nonvanishing active force exerted
in a volume results from the difference between inward and
outward fluxes of active impulse, which measures what has
been “spent” to maintain a nonzero steady force.

The hydrodynamic equation (43), together with the ex-
pressions (45) and (49) for ¢'™® and ¢, can be used both
to predict the instability of a homogeneous system at large
enough persistence, as detailed in Sec. III A 2, and to show the
existence of an equation of state for the pressure, as discussed
in Sec. I[IT A 3.

2. Scaling analysis and linear instability

To proceed, it is natural to assume, following [111], that
the stress tensor o (r) is well approximated by a local equation
of state o (p(r)). Consider a small periodic perturbation 60,
say along the x direction, around a mean density py. Equation
(43) shows it to evolve as 9,80, = —qzua’(po)Spq so that
o’(po) < 0 signals the onset of a linear instability and defines
a spinodal region. To proceed further, one could approximate
the various components of o using local equations of states
o™ (p), 0% (p), as was done for ABPs [111]. However, direct
inspection of their physical origin already captures most of the
physics.

Much like for purely repulsive passive particles, o' (py)
vanishes in the low-density, noninteracting limit and increases
monotonously until it diverges at close packing [112]. Be-
cause particles stop when the interparticle force balances the
propulsive one, the scale of f;; is set by vo/u, where vy =
D/t is the typical scale of the self-propulsion speed. The
integral in (45) then selects the typical interaction length g

and the overall scaling of o'¥ is

D r
o™ (po) ~ Poy/ =25, (50)
T

where the dependence on py has been formally written, for
dimensional reasons, as pyS, where S is a dimensionless scal-
ing function of the rescaled density [111]. (Below a crowding
density p., S is well approximated by a linearly decaying
function S =1 — p/p. [24,58,95,113].) Note that (50) can
be derived using (45) or, equivalently, using the Virial-type
formula o'® ~ (Zi#(r[ —r;))®V;V(ri —r))) [114,115].
Contrary to o', 0% (py) is expected to be a non-
monotonous function of py. It first increases linearly with
the density until interactions kick in. Because active particles
collide more often with particles lying ahead than behind
[113], the main effect of these interactions is to lower the flux
of active impulse as the density increases, until it vanishes at
close packing, leading to a nonmonotonous variation of o',
Inspection of Eq. (49) shows the typical scale of o** to be

V2T . D .
o™ ~ pg—=S8(py) = po—S, (51)
iz iz

where S(p) is another dimensionless scaling function.

An overall decreasing stress tensor can then be observed
when the decrease of 0*'(pp) is strong enough to compensate
the increase of o™ (py). From Egs. (50) and (51), this is
realized when the rescaled persistence length is large enough:

Dt S

> —. (52)
ro S

Let us highlight, once again, the similarity of this criterion
with that obtained for ABPs or RTPs [111].

£, =

3. An equation of state for pressure

Finally, before turning to quorum-sensing interactions, let
us note that, as for other active particles interacting via pair-
wise forces [95], the analogy between o and a stress tensor
goes further than Eq. (43): it has a direct mechanical interpre-
tation. Confining AOUPs by an external potential V,, indeed
leads to

J(x) = uV - [0*(x) + ™)) — npVVy  (53)

with ¢'™® and o given by (45) and (49). In a flux-free
steady state, Eq. (53) shows the force density exerted by the
particles on the confining boundary pVV,, to be given by
the divergence of the stress tensor o. Consider a confining
boundary parallel to &,. Integrating (53) from a point ryyx,
deep in the bulk of the system, to infinity along é, shows
the mechanical pressure exerted by the particles on the wall,
P= fx‘::k p(x,¥)d,Vydx, to be given by P = —0, (Fpui ). In a
bulk phase-separated system, xp,x can be equally chosen in
any of the phases, showing that the pressure is identical in
either of the coexisting phases.

B. Quorum-sensing interactions

From bacteria to self-propelled Janus colloids, many active
particles experience propelling forces whose statistics depend
on the composition of their environment and may thus be
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altered by the presence of other nearby active particles. Such
mediated interactions, whether chemical, hydrodynamic or
metabolic, can be modeled, somewhat crudely, by quorum-
sensing (QS) interactions. These can be described using a
self-propulsion whose characteristics depend on the density of
neighboring particles. Consider the dynamics of ABP or RTP,
r = vu(f), where 6 undergoes either rotational diffusion or a
Poisson jump process, respectively. Quorum-sensing interac-
tions can be modeled by considering a self-propulsion speed
that is both a function of the position of the particle r and a
functional of the density field p: v = v(r, [p]) [94,95,116].
In this context, a homogeneous phase at density py has been
shown to be linearly unstable to MIPS whenever [33,34,79]

< log[v(po)] < —i, (54)
d po Po
where v(pg) is the self-propulsion speed v(r, [p]) of a particle
in a homogenous system at density pg. The role of QS for
AOUPs with varying propulsion speed has not been studied so
far. To fill this gap, we consider N AOUPs, whose dynamics
is given by r; = v; and

T(ri, [PV = —Vi + v 2D(x;, [Dn;, (55)

where T and D are functions of r and functionals of the density
field p(r). In practice, we choose t(r, [p]) = 7(p(r)) and
D(r, [p]) = D(p(r)) where p(r) is a local smooth density
field felt by a particle at position r. It is defined through

pr) = / drK(r — )p(r), (56)

with K(r) a positive, symmetric kernel, normalized by
J drK(r) =1 and with a typical range £.

1. A diffusive fluctuating hydrodynamics

We consider a long-time, large system-size limit in which
the density field evolves over timescales ¢ o< L%, where z is
the corresponding dynamical exponent, so that there is a clear
separation between the persistence time 7 and the timescale
of the evolution of the density field. We thus assume that
the dynamics of particle i is well described by its diffusive
approximation. Using (37), this is given by

£ = D(p(r:)V log[t(p(r))] + 2D(p(r))ni.  (57)

Equation (57) amounts to a diffusive approximation of
the dynamics of the N interacting AOUPs by coupled
Langevin dynamics. Standard methods of stochastic calculus
[79,94,117] then allow one to derive a stochastic evolution
equation for p. Altogether, the fluctuating hydrodynamics of
N interacting AOUPs is given by
op(r,t)=V. [DV,?) + [)rV(?) +/2DpA(r, t)],
(58)
where A(r,t) is a Gaussian white-noise field of zero mean
and unit variance.

2. Linear stability analysis of the mean-field hydrodynamics

Equation (58) is the main result of this section: it provides
the fluctuating hydrodynamics of N AOUPs interacting via

QS through D(p) and t(p). The structure of this equation is
very similar to that of RTPs and ABPs interacting via density-
dependent self-propulsion speed [79], but the relationship
between the macroscopic transport parameters and the micro-
scopic parameters of the self-propulsion is clearly different.
The methods developed to study the collective behaviors of
RTPs and ABPs interacting via QS [95,118] can be directly
generalized to AOUPs. First, Eq. (58) immediately leads to
an exact evolution equation for the mean density field p(r, t)
through

R . D(r, [p]
0 p(r,t) =V-{D(r, [pDVp + pr(r, [DDV| —— ) ) |-
T(r, [p])

(59)

Note that this equation is neither closed, nor local. A further
simplifying step is to implement a mean-field approximation
and replace (f(r, [p])) by f(r, [p]), yielding
D(r, [p])
0 p(r,t) =V - D, [pDVp + pt(r, [oDV| —— ] |
=(r, [p])
(60)

At this stage, Eq. (60) already allows one to predict the on-
set of a linear instability leading to MIPS. This is done by
computing the linear dynamics of a perturbation 8p(r, ) =
p(r,t) — po around a homogeneous profile p(r, 1) = po, lead-
Ing to

D(p0)
7(00)

9:8p(r,1) = D(po)Adp + por(po)( > Adp, (61)
where A = V2, the prime refers to a derivative with respect
to pg, and we defined D(py) = D(r, [pp]) and similarly for
7(po). A Fourier transform then shows that mode ¢ relaxes
with rate A4, where

D /
Ay = D(po)q2[1 + po log ( (p0)> } (62)

7(po)
The mode is unstable whenever A, < 0, hence the instability
criterion
D ' 1
(log ﬂ) < ——. (63)
7(po) £0

Equation (63) defines the spinodal region of AOUPs interact-
ing via quorum sensing; it is the direct counterpart for AOUPs
of the standard MIPS criterion (54) derived for ABPs and
RTPs.

Note that Eq. (63) predicts a density-dependent persis-
tence time to lead to MIPS whenever pot’(p9) > T(00)
whereas density-dependent tumbling rates or rotational dif-
fusion, which control the persistence times of ABPs and
RTPs, do not lead to any interesting collective behaviors. The
MIPS experienced by AOUPs interacting via such a density-
dependent persistence time is illustrated in Fig. 4.

3. Phase diagram

The full phase diagram of ABPs and RTPs interacting
via quorum-sensing interactions has recently been predicted
analytically by carrying out one more approximation step
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FIG. 4. Snapshots of N AOUPs interacting via quorum sensing
through Eq. (55) with T = 1 and D(r, [p]) = Dye ¢ can (?()/9) The
field p(r) measures the density field p averaged over a disk of
radius 1 centered in r. A linear instability will lead to MIPS when-
ever A¢ > 2, according to Eq. (63). Simulation parameters: Dy = 1,
po=N/L?> =25, L =50, 1=0.05 ¢ = 44.72, so that A¢ = 2.23.
Color encodes the density averaged over a disk of radius 5. Starting
from a random initial condition, the snapshot is taken after a time
t = 49800.

[95,118]. We present here a direct application of this method
to AOUPs. We first recast (60) into

dp(r.1) = V- [pD(r, [pDVe(r. [pD],  (64)
D )

o(r, [o]) = log p + log 212D (65)
T(r, [p])

Equation (64) shows that g(r, [p]) acts as a chemical poten-
tial. Using a second-order gradient expansion, the nonlocal
sampling of the density field through the kernel K(u) can be
written as

(p(r)) =~ p(r) + LG Ap(r), (66)

where £5 = [u?K(u)du. This allows us to expand g(r, [p])
into

g(r, [p]) = go(p(r)) — k(o (r))Ap(r), (67)
where
D(p)
go(p) = log p + log , (68)
T(p)
g () Dp)
K(p) = —"(— — ) (69)
2\w(p) D(p)
Following the method laid out in [95,118], one introduces the
change of variable R(p), solution of R'(p) = ﬁ. This allows
us to write
S§F(R)
= ——, 70
g(r) SR(E) (70

where F[R] = f dr[¢(R) + %(VR)Z] is the generalized free
energy whose local density is such that

d¢(R)
dR

The phase diagram can then be predicted, at this diffusive,
mean-field level, by carrying out a common-tangent construc-
tion on ¢(R). This was shown in [95,118] to give quantitative
agreement with microscopic simulations as soon as £ is large
enough that each particle interacts with many of its neighbors.

= go(p(R)). (71)

IV. EMERGENCE OF TIME-REVERSAL SYMMETRY
BREAKING

In this section, we discuss observables which can be used
to measure the deviation from equilibrium of AOUPs. First,
we consider the particle current which arises spontaneously
when introducing an external asymmetric potential. We obtain
its expression to leading order based on the small-persistence-
time expansion detailed in Sec. II. Then, we derive the entropy
production rate quantifying the breakdown of time-reversal
symmetry [119]. This observable has been used extensively as
an unambiguous nonequilibrium signature in systems driven
by external fields [120-124] and it has attracted a lot of
attention recently in the field of active matter [41,45,125—
135]. Finally, we end by discussing the symmetry of time
correlations and its relation to entropy production.

A. Current and ratchet

Nonequilibrium systems can sustain currents in the steady
state. One of the simplest settings for this to happen is
a stochastic ratchet: a fluctuating nonequilibrium dynam-
ics in a spatially asymmetric potential landscape generically
leads to nonvanishing currents in the steady state [136,137].
Recently, several works considered active particles in asym-
metric landscapes, both experimentally [27-29,138,139] and
theoretically [26,31,86,140-142].

We consider here a single AOUP on a ring of length L
in an asymmetric potential of period L. Our interest goes to
the induced current J = (p) in the steady state. An interesting
spinoff of our computation of the stationary measure detailed
in Sec. II B and Appendix A is a perturbative expression for
J. To leading order in 7, J reads as

L fy @' (2@ (r)dr

. —— +o(t?). (72)
2f01‘eﬁdrf0L e odr

J=(p) =

We compare in Fig. 5 the above prediction with the results of
numerical simulations of an AOUP experiencing a potential
®(r) = sin(mrr/2) + sin(xrr). The agreement between our nu-
merical simulations and Eq. (72) confirms the validity of our
approximation at small t. In particular, this is an effect that
could not be captured by the UCNA or Fox approximations
described in Sec. I C: both would predict J = 0.

B. Entropy production rate

To probe quantitatively the nonequilibrium properties of
the dynamics, we now consider the entropy production rate
S [119,123]. It is defined as the rate of (Kullback-Leibler)
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FIG. 5. Plot of the normalized current J/t? induced by a ratchet
potential ®(r) = sin(zwr/2) + sin(zr) as a function of the inverse
of the persistence time t~!. The blue dots correspond to numerical
simulations with error bars given by the standard deviation; the red
line is our analytical prediction in the small t limit obtained from
Eq. (72). In the inset, we plot J as a function of t.

divergence between the probability weights associated with
a given realization of the dynamics {r;(¢), p;(¢)}, and its time-
reversed counterpart {rlR ®), p? (1)}, respectively denoted by P
and PR, as

1<ln Plri(®), pi(H)}] > 73)

S = lim — pR[{r?(t), p?(f)}]

ty—oof f
where #; is the length of the trajectory. The entropy production
rate S quantifies the irreversibility of the dynamics. Using
standard path-integral formalism [143], the trajectory weight
can be written as P ~ =4, where the dynamic action A reads
as

1 o
A= E/ [rpi+pi+(1+rpj~Vj)Vi<I>]2dt. (74)
0

We define the reversed trajectories {rX, pR} in terms of the
forward ones as

rR@) =rity —1), pr@)=-—pity—1).  (75)

Note that this amounts to comparing a forward trajectory with
a backward one, realized by a particle whose initial velocity
is the opposite of the final velocity of the forward trajectory, a
choice which has been debated [128,132].

From this definition, we deduce the action difference § A =

A— AR as
1 [ .
SA = 5/ pi- Vi® +t[p; - pi+ Vi@ (p; - V)V, D]
0

+ ;- (pj - V)V dldr, (76)

where AR = A(rR(z), pR(#)) and we use the Stratonovich
convention. Using p; =1I;, it appears that the first line
in (76) integrates into a finite contribution [® + p?/2 +
‘((VCD)Z/Z]g, which does not contribute to S as t; — oco. We
assume that the time and ensemble averages coincide under
the ergodicity condition, leading us to express the entropy
production rate as

‘L'2
§= =4 (b Vb, - V))®). a7

Using the chain rule

%((pi VP0) = 2((pi - Vi) - V)P) + ((pi - Vi) D),
(78)
and given that d(A)/dt vanishes in steady state for any ob-
servable A, we then deduce

2

= —_— s . 3
S= op @i Vi)' ®). (79

The entropy production rate vanishes when ® is quadratic,
a case which has attracted interest in the past [36]. In such
a harmonic trap, AOUPs have a Gaussian, Boltzmann-type
distribution, albeit with a potential-dependent “temperature.”
Equation (79) shows that this quantitative difference with ther-
mal equilibrium does not imply a breakdown of time-reversal
symmetry, in the sense that detailed balance holds. The an-
harmonicity of the potential can thus be used as a handle to
drive AOUPs out of equilibrium. Note that we use S solely
to detect a breakdown of time-reversal symmetry. It can also
be granted a more traditional thermodynamical meaning, as
recently discussed in [31,131,144].

Equation (79) is a global measure of the entropy production
rate over the whole system. We now turn to a more detailed
study of how this entropy is locally produced and, more pre-
cisely, of the spatial structures which are most sensitive to
time-reversal symmetry breaking.

C. Entropy production in MIPS

The relationship between MIPS and equilibrium phase-
separation was initially suggested in [33], using a coarse-
grained description only valid at the homogeneous level.
Further discussions on the role of gradient terms has led to the
realization that this mapping onto equilibrium is generically
broken at higher order in gradients [18,95,96,145,146]. The
entropy production of active field theories was indeed shown
to be peaked at interfaces between coexisting phases [147], a
result which begs to be tested in particle models.

To do so, we first construct a map of entropy production
rate starting from the global formula (79) for S. We consider
the case where particles interact through a pair potential:

1 N
®=7 Z V(r —r)), (80)

i,j=1

where V (0) = 0 to avoid self-interaction. To rewrite (79) as a
sum over particle contributions, we first note that

((pi - V) @)

D APn VP, VB, - VoV (i — 1)),

1
2 ~
n,p,q.i,j=1

81)

Using that

D @ VoV —r) = (pi—p;)- ViV —r;)  (82)
k
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the entropy production rate can be rewritten as
N
S=Y) o (83)
i=1

where o; is given by
2 &
o; = <E Z]j[(pi —p)- ViV - rj)>. (84)
j=

Equations (83) and (84) split the total entropy production rate
into a sum of particle contributions. It is thus tempting to
refer to o; as the entropy production rate of particle i. Note,
however, that we have proven neither that o; is positive nor
that the decomposition (84) is unique. This interpretation thus
has to be taken with a pinch of salt.

Our aim is to compute the local rate of entropy production
associated with a phase-separated set of AOUPs, and in par-
ticular investigate the correlation between the structure of the
density field and entropy production. We consider N particles
in a 2d box, interacting via a short-range soft-core potential
of the form

V(r) =¢ exp |: (85)

1

(r/a)? —1 ]
for r < a. As discussed in Sec. III A, such pairwise repulsive
forces can lead to phase separation at high enough persistence:
a macroscopic cluster of particles then forms and slowly dif-
fuses in the system. This slow diffusion makes the comparison
between the average density and the entropy production rate
profiles numerically difficult and we thus pin the center of
the cluster by applying a truncated harmonic trap of the form
U(r) = Uy(r/ag)? for r < ag. Note that the harmonic trap
does not directly contribute to the entropy production since
it is harmonic.

As shown in Fig. 6 for different particle densities, a macro-
scopic cluster of particles indeed localizes in the center of
the system and coexists with a surrounding dilute gas phase.
Increasing the density mostly results in a shift of the boundary
between the two phases as the cluster grows. Using Eq. (84),
the contribution of each particle to the entropy production can
be measured: particles in the bulk of each phase have negligi-
ble contributions whereas those localized at the boundary of
the cluster exhibit large values, both positive and negative, of
o;. To compute the net contribution to the entropy production,

we construct a density o(r) = vazl 0;8(r — r;) of entropy
production rate, where the overbar represents a binning pro-
cedure and a time average in the steady state. The resulting
profiles are shown in Fig 7, where they are compared to the
density profiles.

As hinted from Fig. 6, o (r) is indeed much smaller in bulk
phases than at the boundary of the dense cluster, which high-
lights that the breakdown of time-reversal symmetry in MIPS
is dominated by interface physics. Novelty with respect to a
bona fide equilibrium phase separation will thus mostly op-
erate at the interface between dilute and dense phases, which
echoes recent results on reversed Ostwald ripening and bub-
bly phase separations in active systems [96,148]. The almost
negligible value of o; in both bulk phases can be understood
by inspection of (84): o; vanishes in the dense phase since the

relative velocities between the particles vanish, and it reaches
a small plateau value in the dilute phase, where collisions are
scarce. On the contrary, o () reaches a maximum value at the
interface where fast particles coming from the dilute phase
collide onto slow ones arrested in the crowded cluster.

Note that our microscopic analysis corroborates the
phenomenological coarse-grained approach of [147]. This
validates a posteriori the idea that, at the coarse-grained scale,
the difference between MIPS and an equilibrium phase sep-
aration lies in nonconservative gradient terms contributing
mostly at the interface. Finally, the differences between all
microscopic models exhibiting MIPS-like behaviors, whether
on or off lattice, interacting via quorum-sensing or pairwise
forces, should be mostly apparent, at the coarse-grained scale,
in the different types of gradient terms they will generate.

D. Symmetry of time correlations

While entropy production rate provides a formal estimate
of the breakdown of time-reversal symmetry, its practical sig-
nificance may be hard to grasp. It is furthermore not easily
accessible experimentally, and its measurement has thus been
carried out mostly on low-dimensional systems [149,150]. A
more pragmatic measurement of irreversibility can be inferred
from the asymmetry of time correlations of physical observ-
ables. For systems in equilibrium, time reversibility indeed
implies that time correlations are symmetric. Consider first
an overdamped equilibrium system whose configurations are
specified by the positions r = {r;} of the particles. For any two
observables A(r) and B(r), time reversibility implies that

(A(0)B(1)) — (A(1)B(0)) =0, (86)

where the average is defined as

(A(0)B(t)) = / dr P,(r)A(r)e' S B(r). (87)

In (87), L is the Fokker-Planck operator and P(r) the corre-
sponding steady-state distribution.

Equation (86) can be generalized to systems with odd
variables under time reversal (p = {p;}), such as, for in-
stance, underdamped dynamics. As discussed in Appendix C,
considering observables A = A(r, p) and B = B(r, p), time
reversibility now implies that

App(t) = (A0)B(1)) — ((TTA)(X)(T1B)(0)) =0,  (88)

where IIA(r,p) = A(r, —p) and analogously for B. In
Eq. (88), the average is defined as in (87), albeit with the
Fokker-Planck operator £ now acting on function Py(r, p)
defined on the full phase space. The vanishing of A4 p in
Eq. (88) simply reflects that trajectories r(s), p(s) of length ¢
are as likely as the reversed ones r(t — s), —p(¢t — s) obtained
by flipping the momenta.

AQOUPs possess an effective equilibrium regime, character-
ized by a vanishing entropy production rate for small 7, and
we thus expect (88) to be valid in such a limit. Let us first show
how the computation of A, p(¢) and of the entropy production
rate bear some similarities. Using the path-integral methods
presented in Sec. IV B, the correlator (ITA(¢)ITB(0)) can be
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-5 o(r). 5 -5 o(r).m 5

FIG. 6. Snapshots of AOUPs interacting via the short-range soft-core potential (85), and confined in a harmonic potential U (r) = Uy(r/ag)?
with finite range ay. The range of the potential is represented by the gray circle. The color of each particle refers to the associated instantaneous
value of the entropy production rate, expressed in units of 1/7, = £/a>. We observe that particles form a dense compact cluster centered at the
bottom of the harmonic trap with radial symmetry, in contact with a dilute bath of particles. The interface between the dense and dilute phases
fluctuates, and the relative size of the dense phase increases with the number of particles from (a) to (d). Number of particles: (a) N = 5625,
(b) N = 6750, (c) N = 7875, (d) N = 9000. Other parameters: L = 150,D = 1,Uy =2,e = 10,a =1, t = 10, ay = 60.

written as (q(t — s), —p(t — s)), this can be recast into

(MA(H)IIB(0)) = /D[q, p1F[q(0), p(0)]5(q — p)
MAMNTBO)) = | DIgR, pRIS@R — pP)PIqR (1), —pt
« AP ITB(O), (89) (TMA(#)T1B(0)) / [q7, p"16(q" — pOKIQ (), —p ()]
where A is the dynamical action defined in (74). xem A AT 'A(q"(0), P*(O)B(q" (1), p* (1)),
Changing variable from (q(s), p(s)) to (qR(s), pR(s)) = (90)
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FIG. 7. Density and local entropy production rate profiles as functions of the distance from the center of the harmonic trap. Parameters are

the same as in Fig. 6.

where we have used that s A[qR, pR] = A[q}, p*] — Alq, p].
Finally, using that

PslgR@).—pR)

PIGR(1), —pR(1)] = PLqR(0), pR(0)]¢E Riekipkon

and dropping the superscript R on the dummy variables q®, p?
leads to

App(t) = <A(0)B(t)(1 _ SAlapltog 7’3\[Fﬁ(33}‘?3’>’1])>_ 1)

The connection to entropy production then comes from the
fact that
1

S= —tlim —(8A+1og

t Flq(), —p(t)])' ©2)

F[q(0), p(0)]

We have shown in Sec. IV B that the entropy production rate
scales as S oc T2 when T — 0. Equation (91) instead involves
the total entropy production during a time ¢. Approximating
the latter by tS would imply that Ay g~ (1 —e ") — 0
as long as t <« t~2. This approximation is, however, uncon-
trolled, and one has to deal, in practice, with the boundary
terms that vanish in the computation of S.

In this section, we thus follow an alternative path, based
on an operator formalism, that allows us to treat the small
¢t limit exactly but offers bounds on the decay of A4 p with
T which are weaker than those derived for S. In the limit

T — 0, the generator of the AOUPs process, i.e., the adjoint
of the Fokker-Planck operator, is time-reversal symmetric. As
T increases, it develops a nonsymmetric part, which can be
computed using our expansion of the steady-state distribution
for small 7. As detailed in Appendix D the leading order of the
antisymmetric part of the generator is given by 7L, where

d
L}(q.p) = {(ViV?®) — [(B, - V,)’V;®]} - P
and we work again with the rescaled variable p = ,/Tp. Using
perturbation theory [151], we show in Appendix D that

App(t = tu) = v / " / dqdp P(q. P)A(q, P)
% em%ﬁ*(q,mﬁ; (q, p)e" VL @P B(q, p)
+ 0(7?). (94)
Noting that \/TL" ~ O(z°), we conclude that, for short times,
App(t =Tu) ~ O(t?) for u~ o).  (95)

A stronger result than (95) actually holds when at
least one of the two observables, say B, depends only on
positions: B = B(q). In this case, indeed,

e(”*"l)ﬁﬁ"'(q,f))B(q) — e("*ul)ﬁﬁg(qvf))B(q) +0(J/7)
= B(q) + O(J/7), (96)
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where the first equality comes from expanding £ and retaining
only its leading order in t, Ly, which is given by

fﬁo_

32
p,a +D—- CH)
)
The second equality then follows by noticing that £ acts only
on momenta. Inserting (96) in (94) leads to

App(t = Ttu) = O(t?), u~ 0. (98)

As announced earlier, the effective time-reversal symmetry
(TRS) of AOUPs dynamics for small t thus leads to a cor-
responding symmetry for two-time correlation functions. The
convergence as T — 0 is faster for position-dependent observ-
ables than in the full phase space r, p, which is consistent with
the fact that momentalike variables have to be handled with
care in the context of TRS [45,128,132].

V. EFFECTIVE EQUILIBRIUM: LINEAR RESPONSE
AND FLUCTUATION-DISSIPATION RELATIONS

A most celebrated way of probing the nonequilibrium
nature of the dynamics lies in investigating the connection
between fluctuations and responses. For passive inertial Brow-
nian particles (5), a perturbation of the potential ® — ® — hB
amounts to modifying the dynamics into

tpi = —p; — V,;® 4+ hV;B+ 2Dy, 99)

We define the response function R which measures the ef-
fect of the perturbation on the average value of an arbitrary
observable A as

§(A())
Sh(s)

R(t,s) = (100)
Causality enforces that it vanishes when ¢ < s, and time-
translation invariance in the steady state means that it
only depends on the time difference ¢ —s. In equilib-
rium, fluctuations and response are related by the celebrated
fluctuation-dissipation theorem (FDT). The latter states that
the response function is related to the decay rate of the (un-
perturbed) correlations between A and B:

1d A(B

= Ddt( (1)B(s)).
Our aim is to determine to which extent one can obtain a
fluctuation-dissipation relation (FDR) analogous to (101) for
the active dynamics (1), a topic which has attracted interest
recently [152-156]. These works are based on the explicit
expression of the steady-state distribution of AOUPs. Here,
instead, we follow [41] and proceed at a dynamical level
to derive generic relations between response and correlation
functions, which do not require any knowledge of the steady
state. We then study the response to perturbing the strength of
self-propulsion in the effective equilibrium regime.

R(, ) (101)

A. Perturbing with an arbitrary potential
Under the perturbation ® — ® — hB({r}), the dynamics
(1) changes as

i‘i = —qu>+hV1B+Vl (102)

To compute the response function of an observable A({r}), we
write the dynamics for p; = r; as

d
i = —pi — <1+rd >(Vd> hV.B) + ~/2Dn;. (103)

Using the formalism of Sec. IV B, the dynamical action be-
comes

2

! d
A=— (1 + Td—)(pi + V;® —hV,;B)| du. (104)
u

The probability of a trajectory is given by P({r(¢), p(¢)}) ~
exp[ — A[{r(), p(t)}]1], so that §P = —8 AP, leading to a
response function given by

5A
Sh(s)

R, s) = <A(t)

> (105)
h=0

Note that it is sufficient to compute 8.4 to first order in /:

t d2
hV.B - (1 -1 —)(pi + V,®)du + O(h?)

du?

(106)
to determine the response function. We now follow stan-
dard procedures [151,157] and we consider the difference
R(t, s) — R(—t, —s) in the steady state where time-translation
invariance means that R(z, s) = R(t — s). The difference of
response functions reads as

1
SA=——
A=

0

R(t —s)—R(s—1)
_ ! A V;B[ 1 2 & F+V;d
_E< ()[ i ( -1 @>(p,+ i )}(s)>

! A VB a Vo
_E< (—I)[ ; ( -7 ﬁ)(pi"‘ i )](—S)>~

(107)

We now use that, due to time-translation invariance in the
steady state, for any two observables A and C we have
(A(—=1)C(—=s)) = (A(s)C(2)). This leads to

1 i d?
R(t =) = R(s =) = (A1) V,»B(l— d2>l’f](”>
1 2
— E(A(S) ( d—)Pz:|(f)
! A v.B[1 2 & V;®
+5<(> ; (— d—) i }(s)
—i<A() v3<1_ Zd—z)v }(t»
2p Y ds? )
(108)

Using causality, we have that, for s < ¢, R(s — ¢) = 0. Further-
more, in the effective equilibrium regime, the symmetry under
a time reversal enforces that the last two lines in (108) cancel
out, whereas the first two add up. All in all, the response
finally reads as

1d B rzA . VB
_BE< (1) (s)>—3< ()i - Vi)B(s)).
(109)

R(t —s) =

032607-15



DAVID MARTIN et al.

PHYSICAL REVIEW E 103, 032607 (2021)

By contrast to thermal equilibrium, the response is not the
time derivative of a given function in general. There are ex-
ceptions, for instance, when B = ), fir;, where f; are a set of
constant forces exerted on the particles, as considered in [41].

The two approximate treatments presented previously,
based on either UCNA or the Fox theory, lead to Markovian
dynamics for the particle positions. Therefore, we can use
previous results which predict the form of the response in
terms of the stationary distribution [158,159]:

d In P
o5 (S)>,
oh h=0

where Ps denotes the stationary distribution under the
perturbed potential ® — AB. From (24), we linearize the dis-
tribution around the unperturbed state as

R(t,s) = —%<A(r) (110)

DInPs=—-® — %(Vicb)z + D In |det M|

+h(B+tV;® - V,B—1tDV;B) + O(h*), (111)
yielding

1d 5
R(t) = —l—)E(A(t)(B +tV;® - V;B—tDV;B)(s)). (112)
The result (112), which stems from the Fox theory and UCNA,
differs from (109). This shows that UCNA and the Fox theory
have to be used with care when studying dynamical observ-
ables, even to first order in 7.

B. Perturbing the amplitude of fluctuations

Let us now consider a perturbation D — D[1 4+ h®(t)]
in Eq. (2), which can be seen as a change in the typical
self-propulsion speed /D/t at fixed persistence time. Such
perturbation is particularly interesting given the recent ex-
perimental development of self-propelled particles, both of
synthetic [63,64,160,161] and biological [162—166] natures,
whose self-propulsion speed can be controlled by external
light sources.

Let us first recall what happens in equilibrium when per-
turbing the temperature, an operation we denote by T —
T[1 + h©O(¢)]. Both in the overdamped and in the under-
damped cases, the effect of such a perturbation on an arbitrary
observable A can be written as [158,167]

(8A(t)) = h (113)

T
where H is the energy of the system, we set the Boltzmann
constant to unity, and (6A(¢)) = (A(¢))n — (A(0)). Here, the
average (-);, is computed in the presence of the perturbation.
Let us now consider the case of AOUPs. In Appendix E,
we show that a similar relation can be derived for times ¢ ~ 1:

(H(0)[A(0) —AM®)]),

(BA(t = s1)) = %(Heff(O) [A(0) — A(t = sT)]) + O(z/?),

(114)
where
Hee = Hy + TH,,
—2
P;
HO = (D + ?7
Hy = L[(V:®) + (p; - V)*® —3DV?®]. (115

The above result is the generalization to AOUPs of the
equilibrium result (113). Interestingly, H.s is the effective
Hamiltonian one would infer from the logarithm of the
stationary measure (17) up to order O(tr). At odds with
equilibrium systems where Eq. (113) is valid for all times,
Eq. (114) is only derived here for short trajectories.

VI. DYNAMICS OF COLLECTIVE MODES

In this section we study the dynamics of the fluctuating
microscopic density and velocity modes. They are defined in
terms of the particles’ positions and velocities by

N N
p(r.t) =Y Slr—ri(")]. ga(r.t) =Y pidlr —r;(t)],
i=1 i=1

(116)
which are sometimes referred to as empirical measures. Nei-
ther p nor g,, are hydrodynamic fields in the sense that they are
not built from a mesoscopic coarse-graining procedure. They
are still fully microscopic (and as such highly singular) objects
and one can thus hope to obtain exact evolution equations for
them.

For particles evolving according to overdamped Langevin
equations, Kawasaki and Dean have shown the steps towards
an exact partial differential stochastic equation for the local
density field p [117,168]. Extracting physical information at
hydrodynamic level out of the Dean-Kawasaki equation often
requires, however, a further crucial approximation: to replace
p with a smooth field p*, the hydrodynamic field, and assume
that p* still solves the same Dean-Kawasaki equation. Indeed,
it is an implicit assumption of most numerical and analytical
approaches that one looks only for solutions with sufficient
degree of regularity, which p” is assumed to have while p
clearly has not.

We are aware of only one case where it is possible to prove
that the smoothing procedure described above is harmless, in
the sense that the evolution of p obeying the Dean-Kawasaki
equation approximates precisely the evolution of p. It happens
for overdamped particles interacting with a weak potential,
that scales as 1/N. This is a relevant model for either systems
with long-range interactions [169] such as interactions medi-
ated by a surrounding low-Reynolds number fluid [170] or for
very soft bodies such as polymers [171]. In this case, compar-
ing rigorous mathematical results [172] with those obtained
from the Dean-Kawasaki equation allow to conclude that p
captures not only the average evolution of p but even its fluc-
tuations up to those whose probability is exponentially small
in N [60]. For systems without weak interactions, it remains
an outstanding open question the degree of approximation that
is involved in passing from the empirical measure p to the
smooth hydrodynamic field p*.

In the case of systems with underdamped dynamics, a
similar procedure to the one leading to the Dean-Kawasaki
equation, but now involving both p and g, was later achieved
in [173]. In this case, passing to the hydrodynamic limit would
require further assumptions with respect to the case of over-
damped particles, even if the equations for p and g, appear
to be closed. The main point is that, while some of the steps
needed to derive closed equations for p and g, are exactly true
when working at the level of the empirical fields p and g, it is

032607-16



STATISTICAL MECHANICS OF ACTIVE ...

PHYSICAL REVIEW E 103, 032607 (2021)

unclear whether they remain valid in the smoothing required
to pass from them to their hydrodynamics counterparts. Tak-
ing a different approach, closure at the hydrodynamic level
has been discussed by several authors up to very recently
[174—-179] (see also [115,180] for a more recent discussion
within the framework of active matter).

We will not consider the issue due to passing from empir-
ical measures to hydrodynamic fields further in what follows
and concentrate instead on deriving the exact equations for p
and g, for AOUPs. These could be employed to pass to the
hydrodynamic level of description and generate Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) type hierarchies or
implement approximation methods with no analog within the
Lagrangian particle-based formulation, but their development
goes beyond the scope of this paper. We limit ourselves, at the
end of the section, to sketch future research directions along
these lines.

A. Fluctuating hydrodynamics

We first derive the set of equations ruling the coupled
dynamics of p and g. The time derivative of the local density
of course takes the form of a continuity equation

N
B p(r, 1) = =0y Y Fiad[r — (1)) = —0uga(r, 1), (117)

i=1

thus expressing the conservation of the number of particles.
The time derivative of the current density g, is given by

N N
0i8a(r, 1) = =05 Y piapipdlr — T + Y piadlr — ri(1)].

i=1 i=1

(118)
To proceed further, we assume that the particles interact
through pairwise interactions only as given in (80). When
substituting the microscopic dynamics (4) in the expression
for the time derivative of g, a term of the following form
appears:

N
> pipdiadp®Slr — r;(1)]
i,j=1
N
= Z Pjp0iadjpV (x; — xi)d[r — 1r;(1)]

i,j.k=1

N
= Y (Pipdip + Prpdip)diaV (Xi — 1)S[r — 1;(1)]
i,k=1

= [gp005(V % p) — pdgs(V xgp)|(r, 1),

where the star % refers to a spatial convolution, e.g. (V *
gp)(x,1) = [dyV(x — y)gs(y, 1). The dynamic equation for
the current density field g then follows as

(119)

10 8a + pkap = —8a — T[8pd0s(V % ) — pIgs(V * gp)]

— P (V % p) + (2Dp)' A, (120)
The noise term A, is Gaussian with correlations
(Ao(r,)Ap(r', 1)) = 84p8(t —t")S(r — 1'). (121)

In Eq. (120) we have introduced a local tensor « defined by

N

Kap =T Y _ PiaDipdlr — Ti(t)], (122)
i=1

which can be viewed as the fluctuating analog of the kinetic

part of the stress tensor, as described by Irving and Kirkwood

in their seminal contribution [see Eq. (5.13) in [108]].

As was noted in [173], with the additional assumption
that particles are discernible or that, equivalently for classical
particles, there exists a minimal hard-core radius that prevents
complete particle overlap unless these are identical, it is pos-
sible to rewrite « in a closed form involving g and p. Indeed,
if 8(x — I'[)(S(X — l’j) = (Sl-jé(x - l’l‘)(S(X — I'j), then

Kop(r,t) = tM.
0

(123)
In line with the discussion in the introduction of this section,
while the equality in Eq. (123) is obtained working with
empirical distributions, it is unclear whether it shall remain
valid when passing to the hydrodynamic fields. In any case,
the kinetic stress tensor g,gg/p was shown in [173] to be
consistent with a kinetic energy [ drg®/(2p) for equilibrium
particles with underdamped dynamics, hence its appeal.

B. A few comments on possible applications

As discussed in [173] for equilibrium underdamped
Langevin dynamics, neglecting inertia at the level of the g
field is possible and leads us back to the Dean-Kawasaki equa-
tion [117] established directly for equilibrium overdamped
Langevin dynamics. An approximation consisting in neglect-
ing some of the inertial contributions for AOUPs is the
so-called unified colored-noise one. At the individual particle
level, it amounts to formally equating the left-hand side in
Eq. (4) to zero. One could then implement the Dean-Kawasaki
procedure to arrive at a stochastic partial differential equation
for p only. The latter would be identical to that obtained by
implementing the procedure outlined in Sec. 3.2 of [173] that
allows one to evaluate the g nonlinearity keeping p as a slow
variable. In a somewhat more controlled fashion, assuming
fast equilibration of the g field in the small t regime, the latter
can be enslaved; this procedure, which basically rests on the
replacement kg — TDpdypg, would hold to first order in 7.

It is, however, much more promising to view Eq. (120)
[complemented with the continuity equation (117)] as a
formal basis to generate approximations for dynamical cor-
relations. To do so, we first rescale the dynamics (120) and
(117) to work in the small t regime. One can then follow the
approach developed for equilibrium dynamics in [174,175] to
obtain closed equations for two-point correlations. To illus-
trate the starting point of this procedure, we rescale time and
g just as we did in Sec. II. The resulting equations read as

8o = —v{8a + T[8p005V % 0 — P05V % gp)]}

—p(aaV*p>—aﬂ(@>+ 2Dpy Au, (124)
P

where y = 7172, of course supplemented with the local con-

servation of particles 9,0 + V - g = 0. Written in terms of the
g

local velocity field u = 5 we have fully equivalently that,
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along with 3,0 = —V - (pu),

2yD
u+@-Vyu=-VVxp—yu+ [—A
P

—y{- V)(VV)sp — pV - [(VV)skul}.
(125)

In an equilibrium framework, the combination —yg+
J2yDpA in Eq. (124) expresses exchanges with a thermo-
stat with an effective friction yp. The active contribution
in Eq. (124), namely —ytlggdz,V * p — pdZs(V * gp)], ex-
presses that friction is enhanced when a minimum of the
potential is reached (which effectively pins particles at such a
location and which entails added effective attraction). Within
a fluctuating hydrodynamics approach, the microscopic fric-
tion term y p is replaced by a viscosity tensor [174]. We view
Eq. (124) as an interesting starting point for controlled coarse-
graining procedures which are deferred for future work.

VII. CONCLUSION

Active Ornstein-Uhlenbeck particles were primarily in-
troduced in the field of active matter for the analytical
simplification they offer by relaxing the non-normality of the
active noise. Since fewer studies exist on AOUPs than on their
non-Gaussian counterparts, namely ABPs and RTPs, their
phenomenology has been less thoroughly investigated. This
article brings our knowledge on AOUPs up to par with that on
ABPs and RTPs, as exemplified by Sec. IIT which report MIPS
not only for pairwise forces, but also for a new extension of
AOUPs which features quorum-sensing interactions.

Furthermore, a clear gain obtained by working with
AOUPs is the possibility to develop a formal small t ap-
proximation of the steady state [41], which is not limited
to the first order in t [37,52-55,61]. As shown in Sec. II,
the series can be used to obtain quantitative predictions on

J

3C¢(2) B C¢(1) 2 B Cp2¢(2)

_e_
P(r,p)=e? 51’[C+r< 5 b b

2C¢(1) 2¢(2) 5 3C¢(2) 2

the steady-state distribution, and is not limited to capturing
qualitative features, as initially feared by considering only the
first order in 7 [78].

As shown in Sec. IV, the small r expansion can be put
to work to characterize the departure of AOUPs from their
T = 0 equilibrium limit. In addition, Sec. V shows how linear
response can be developed in this nonequilibrium regime,
allowing us to predict the response of the system to a per-
turbation of its self-propulsion as well as to external forcings.

Finally, a natural next stage is to build hydrodynamic de-
scriptions of AOUPs to study both their collective features as
well as their transport properties. The technical tools to do so
are mature, and presented in Sec. VI. We leave these for future
work. For instance, they could potentially help analyze further
the dynamical phase transitions reported recently in models of
self-propelled particles [134,181-184]
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APPENDIX A: STATIONARY MEASURE FOR ONE
PARTICLE IN A ONE-DIMENSIONAL DOMAIN

At order 72, the exact one-dimensional stationary measure
takes the form

6D

; 1 3p3)
+ Cl) + -L—% (—Ecp(b@) + %)

+12 B 4C¢(4)+ 4c¢(2)2+ 2C¢(1)¢(3)
Poap TP gpr TP T4p

cip?® 1
> P T TP HZ/ erdx

2D 2D 8D?

cdM2 o [ oM 263 gy D4 3¢:6@  5¢6@2  5c6Mp®  5SDedp®
_1¢+f¢¢ +62+¢+1¢+¢8_¢4¢+8¢>

5 o c19® cp 29 cp@p® 5cpMep® 7Dc¢ 3 cr9p® 3 coM 29
2 —_— D f— — J—
tr ( A N Y, S ML 2w TP e 12D?
. e L
P=p TP 36D 1200 P 22 )|

where explicit dependencies on r and p have been omitted
when unambiguous and ¢, ¢y, ¢3, a, are integration constants.
We can thus compute the constant steady-state current

J = —2na,D*t* + o(t?). (A1)

(

Integrating over the p variable, we then obtain

o~ 2
Ps(r) = v/2x D% b [(C +tc)+ t(cqﬁ(z) - C_¢2D )

1 3
—cpMp®

e cD¢p® N cp®?
2 4
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[ ™29 dx . C¢<1> 26
2D 4D

+a2/egdx>:|.

The integration constants then depend on the choice of
boundary conditions. First, we consider the case of a particle
in an infinite domain and thus require the potential to be
confining. In this case, the term e’%az f "ebdx does not
vanish automatically in the limit » — %00 and a, thus has
to vanish. As expected, this leads to a vanishing current J.
The constants c; are then set by normalization at each order

J

+c

+ 1@

(A2)

7!, The expression (20) in the main text then comes from
exponentiating Eq. (A2).

Second, in the case of a periodic potential with finite sup-
port, a; must instead be set by requiring the periodicity of
the steady-state distribution (A2). For a system of size L, this
gives

B _Cf()L d D 23 dx
ay=———"—F—F—. (A3)
2D [, evdx

Altogether, we arrive at

® @'(r) DOW(r) [T ') P (y)dy " (r)?
Ps(r) ~ — " (r) — 2 — ' (NP (r) —
s(r) CXP[ ot r( ) ——p= )+t + D (N®(r)
(1)t 3V (P(r) [ eb [ 920D @) [l e v (T — o?) 5
T T8D? 4D - L o L _¢ +0@) |
2D [, eb 2D [y e b
(
The last lines differs from the case of a confining potential; leading to
it enforces periodic boundary conditions and leads to the 1 9d
nonvanishing current (72). Ps({r;}) ~ exp <_B [ aTMia,jﬁdrjﬁ) |[det M. (BS)
Using Mg, g = 8ij0ap + tagx,jﬂ(D, the explicit expression of

APPENDIX B: APPROXIMATE DYNAMICS

We present in this Appendix two approximate forms of
the dynamics of interacting persistent self-propelled parti-
cles. They are inspired by approximation schemes which
were originally proposed for noninteracting particles: the uni-
fied colored-noise approximation [54,55] and the Fox theory
[52,53].

We derive the stationary distribution of the unified colored-
noise approximation (UCNA). To this aim, we turn the mul-
tiplicative Langevin equation, written with the Stratonovich
convention in (22), into an additive one by introducing the
following change of variables:

Gia =/Mia,jﬁdrj5, (B1)

so that the Jacobian between q; and r; is given by |det M.
The corresponding Langevin equation reads as
0o

— (2D)' 1.
Bria

Gia = — (B2)

One can explicitly check that this is an equilibrium Langevin
dynamics for q because

90 B3[P+ T(V,D)]
aria B 8qia

(B3)

which means that the force in q space, and thus in r space,
is conservative. It is then straightforward to write the corre-
sponding Fokker-Planck equation, from which we deduce the
stationary distribution as

1 P
Ps({qi}) ~ exp (_B / aTdCIia)v (B4)

the stationary distribution (24) follows directly. Note that the
above derivation shows that UCNA does not solely provide an
effective potential for the dynamics: it is a purely equilibrium
approximation of the latter, and hence it is unable to capture
nonequilibrium features such as the emergence of currents in
ratchet potentials as discussed in Sec. IV A.

Another approximate dynamics can be derived by using
functional calculus on the weight P of a given time realization
of the noises. Introducing the kernel K defined in terms of the
self-propulsion correlations as

[ K = o mpidu =56 - b5, B0
we write the probability weight P as

P =exp [—% // K — $)viq () vig (s)du ds]. (B7)
0

The distribution of positions at a given time ¢ can be expressed
in terms of this probability weight as

N
Par).o = [ P - aoDv. @)
k=1

where the positions q; satisfy the dynamics q; = —V;® +
vi. It follows that the time derivative of this distribution reads
as

N
P =V, { / PIVi® —vil [ ] ol — qka)Jka}

k=1

N
=-V;- {/Pw(r)]"[a[rk — qku)]ka}
k=1

+V,;-(PV,;®D). (B9)
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To proceed further, we note that
Vi ()P = P[S(t — )V (5)ds

__ / (o, (), (5)) (B10)
0

—ds,
5vio¢ (S)
where we have used Egs. (B6) and (B7). It leads to

N
[ Pua[Totm - avonpv,
k=1

~ SP
_ _/0 (vly(s)vly(l‘))dsf SVig (8)

N
x [ ]t — qu)1Dwe
k=1

. 8q;(t)
_ _Vj.,/(; (vly(S)UlV(t»ds/Pm

N
< [ J8lre — q()1Dvs,
k=1

(B11)

where we have integrated by parts with respect to v;, to get the
second line. From the dynamics ¢; = —V;® + v;, we obtain
the following identity:

d 3q,5(t) _ _8q5() 9°P
dt 8Uia(s) (Svia(s) aquJQjﬂ

+8;0480(t —s). (B12)
This equation contains a sum which was omitted in
[40]. Introducing the Hessian H with elements Hy, jg =
32<I>/(8qia8qjﬁ), the solution can be written for ¢ > s as

8qp(t) _ [e—f; H(w)du]

via(s) B

i, jB”

Substituting in Eq. (B11) and using
De =51/, we get

(vy (Dvry (9)) =

N
/Pvia l_[ S[ry — qi(t)]Dvy
k=1

D ! ¢

= 9. —(t=s)/[ ,— J; H(w)dw

= taJﬁ{[PA e [e ]iafjﬁds
N

[ Jotre - qk(r)]ka}

k=1

= D9g(PDjo, jp), (B14)
where we have introduced the diffusion tensor D as
t
D) = / o t=9/T o= [ Hw)dw ¢
0
! 4

= / e*u/ref o H(w)dwdu. (B15)

0

This is valid for any value of 7 since we have not used any
approximation at this stage of the derivation. To get rid of the
kernel in D, we assume that H varies slowly in time, in the

same spirit as the original Fox theory [52,53]:

/ H(w)dw ~ uH (), (B16)

yielding
t t
D(t) ~ / e Te MO dy = / e MOgy,  (B17)
0 0

where we have used My jg = 8;j8ap + TH,q, jp. Integrating
and performing the same approximation as Fox gives
D) >~ tM ' (0)[1 — e MO/ ~ M (1),

The Fokker-Planck equation (25) follows directly.

(B18)

APPENDIX C: TIME REVERSAL, TIME-TRANSLATIONAL
INVARIANCE, AND TIME-REVERSED PROCESS

To discuss time-reversal symmetry, we introduce the
Markov process that corresponds to the time-reversed pro-
cess of the original one. The latter is defined as follows: it
is the Markov process that generates a time-reversed trajec-
tory r(ty —t), —p(ty —t) with the same probability as the
original process generates the original trajectory r(z), p(z),
where #; is the length of the trajectory. We denote £ and
LT the generators of the original Markov process and of its
time-reversed counterpart, respectively. Note that the reversed
process is not obtained by simply reversing time in the original
dynamics; the dynamics obtained in this way would not satisfy
the Markov property. This is well known in the mathematical
literature; the reversed process was rigorously constructed by
Haussmann and Padoux in [185] (see [186] for a detailed
presentation).

Introducing the operator I1f(q,p)= f(q, —p),
translation invariance imposes that

(B(1)A(0)) = (B(O)A(=1)) = (IB(O)ITA(t)),,  (CI)

time-

where the last equality can be regarded as a mathematical
definition of the reversed process. The last average in (C1)
is then defined as

(IIB(O)ITA(t)),
= / dqdpPR(q, p)B(q, —p)e'“"@PA(q, —p), (C2)

where PR is the stationary distribution of the time-
reversed process, which satistfies PR(q, p) = [1P(q, p).
From Eq. (C1) we thus have

/ dqdp Py(q, p)A(q, p)(¢“ “P'B)(q, p)

= / dqdp(T1P,)(q, p)(TIB)(q, p)¢'~ P (1A)(q, p).

(C3)
This equality holds for any time ¢ and observables A, B. Tak-
ing its time derivative and setting ¢ = O leads, after integrating
by parts, to

Ll =1P ' LPTI. (C4)
Note that Eq. (C4) also implies that
¢fr = TP “ P (C5)
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A check that /31' defined as (C4) indeed satisfies Eq. (C1) then
stems from rewriting the right-hand side of Eq. (C2) as

(IIB(O)ITA(7)) Z/dqdp[nl’s(q, p)I1B(q. p)]

x TP ' P,T1 TIA(q, p), (C6)

which leads to
<HB(0)HA(I)),-=/dquB(q, P PA(Q,p)  (C7)

or, equivalently, to
(IB(O)ITA(2)), = (B(2)A(0)). (C8)

The definition of time-reversal symmetry is that £, = L.
One then has that Pf = P;. The left-hand side of (C8) can
then be written as (I1B(0)I1A(z)), = (ITB(0)ITA(¢)) so that
we finally have

(MB(O)ITA(1)) = (B(1)A(0)) (C9)
which is Eq. (88) of the main text.

APPENDIX D: SYMMETRY OF TIME CORRELATIONS

We present a derivation of the asymmetry of time correla-
tions, quantified by Asp in (95) and (94), using the reverse
process introduced in Appendix C. When detailed balance
holds, £ = L' so that the reverse process is the original
dynamics, as expected since equilibrium dynamics is invariant
under time reversal in the steady state. For AOUPs, using the
approximate stationary measure (17) and the definition of £
in Eq. (C4), we obtain

LI, p) = L(x,p) + L, p) + O(=*?), (D1)

where p = /Tp has been introduced in the main text and the
leading-order antisymmetric part is given by

L}, p) = {(ViV2®) — [(p; - V;)’Vi®l} - % (D2)
We thus see that detailed balance holds perturbatively in 7 in
the full (r, p) space, though it only holds up to order /7 when
p is not integrated out.

We now want to show that the asymmetry of time correla-
tions Ay p satisfies the expansion (94). By definition, we have

(MA@)IB(0)) = /dl_’qus(q, P)(TB)(q, p)e'“ TIA(q, p).

(D3)
Taking the adjoint of Eq. (C5) and reorganizing the integral
leads to

(TA()TTB(0)) = f dp dq(TIP,)(q, PIA(q, P>/ B(q, ).

(D4)
Using the rescaled time ¢ = /7 f, we can thus rewrite Aap(f)
as

Anp(P) = / dqdp P(q. DA, )

e P&‘ , —D -t
o e A e
P(q. p)

Note that, for Kramers dynamics [187], £ =L and
P(q, —p) = Pi(q, p) implies that A4 5(f) = 0, as expected.
For AOUPs, using the stationary measure (17) to expand
P:(q, —p)/P;(q, p) for small 7, we find

Ay p(f) = /dqdpPs(q, p)A(q, p)
x (et'/f(q,fl) _ efﬂff(q,P))B(q’ p) + O(z¥?). (D6)

Using linear response [167], we note that the difference be-
tween the two evolution operators can be evaluated as

[e;mq,,—,) _ ez’ﬁr(q,r))]
r o _ o
:‘L’/ dsleslb(q’p)ﬁ;x(q, p)e(t*Sl)ﬁl(q.P)+0(.[2)’ (D7)
0

where ﬁ; (q, p) is the leading order antisymmetric part of the
generator of AOUPs dynamics, given in (D2). Plugging (D7)
in (D6) we obtain

A =1 / ds, / dqdp Py(q. p)Aq. )
0

s LY (ap \ (F—sLT(aB _
x 515 (q"’)ﬁf,(q, p)e(t L (q’P)B(q, p)+ 0(1-3/2)_
(D8)
Finally, using the explicit expression of E}; and rescaling time

as 51 = u14/T, we obtain Eq. (94), which was the goal of this
Appendix.

APPENDIX E: PERTURBATION OF THE
SELF-PROPULSION SPEED

We present in this Appendix a derivation of Eq. (114). To
do so, we apply the Agarwal formula [151,158] which states
that the response of an observable A to the perturbation D —
D[1 + h®(2)] is given by

(BA(D)) = / ds<%(0)A(s)>+0(h2), (E1)
0 s

where L, is the Fokker-Planck operator corresponding to the
perturbation

hD 32

Ly(p) = o (E2)

In order to obtain Eq. (114) from (E1), we first note that,
inserting expression (17) for P; into (E1) leads to

1L,0F@p) _ 1 . i
h P(q.p) L@, —P) Herr(q. ) + O(1), (E3)

where Hg is defined as

Hefr = Hy + TH,

=2
m:¢+%,
1
H, = 5[(Vi<1>)2 +(P; - Vi)’® —3DV}®].  (E4)
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Equation (E1) can thus be rewritten as

(SA(D)) =—% fo ds((TIL))Her(0)A(s)) + O(z, h*). (E5)

Then, from the definition of time-translational invariance, we
have that

/ dqdp P(q. p)Her(q. p)(¢“ P A)(q. p)

= f dqdp(TTP,)(q, p)(TTA)(q, p)e’“ P (TH. )(q, p).

(E6)
Taking the time derivative of this equality at time s = 0 and
using Eq. (C5) then leads to

(H(O)L'A(s)) = (A()(TIL))Hesr (0)). (E7)

Using that 9;A(s) =
rewritten as

LYA(s), Eq. (ES) can thus be finally

(A = — 2 / ds< eff(0>w>+0<r,h2>. (EB)

Then, using 7 = s,/T with s ~ O(z") and integrating, we ob-
tain Eq. (114).

Note that, again, we did not use the path-integral tech-
niques described in Sec. V A for describing perturbations
obtained by applying an external force. The operatorial ap-
proach we followed here holds for short trajectories, albeit we
expect the result to be valid for longer ones. An interesting
alternative approach would be to generalize the analysis pre-
sented in [188,189] which uses path-integral formulation to
solve a similar problem, albeit in equilibrium.
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