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The hallmark of active matter is the autonomous directed motion of its microscopic constituents driven
by consumption of energy resources. This motion leads to the emergence of large-scale dynamics and
structures without any equilibrium equivalent. Though active field theories offer a useful hydrodynamic
description, it is unclear how to properly quantify the energetic cost of the dynamics from such a coarse-
grained description. We provide a thermodynamically consistent framework to identify the energy
exchanges between active systems and their surrounding thermostat at the hydrodynamic level. Based on
linear irreversible thermodynamics, we determine how active fields couple with the underlying reservoirs at
the basis of nonequilibrium driving. This approach leads to evaluating the rate of heat dissipated in the
thermostat, as a measure of the cost to sustain the system away from equilibrium, which is related to the
irreversibility of the active field dynamics. We demonstrate the applicability of our approach in two popular
active field theories: (i) the dynamics of a conserved density field reproducing active phase separation and
(ii) the coupled dynamics of density and polarization describing motile deformable droplets. Combining
numerical and analytical approaches, we provide spatial maps of dissipated heat, compare them with the
irreversibility measure of the active field dynamics, and explore how the overall dissipated heat varies with
the emerging order.
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I. INTRODUCTION

Active materials are those in which each component
extracts energy from the environment to produce directed
motion [1–3]. Examples of active systems can be found in
the realm of living matter, such as swarms of bacteria [4–6],
cells [7–10], and bird flocks [11,12], but also in recon-
stituted or biomimetic realizations, such as motility assays
[13,14], Janus particles in a fuel bath [15–17], and vibrated
polar particles [18,19]. To explore the collective effects
emerging at large scales, several studies focus on minimal
models which reproduce, for instance, the macroscopic
collective motion between aligning particles [20,21] and
the clustering between purely repulsive agents [22,23].
Such theories can be particle-based, thus relying on
postulating the form of nonequilibrium forces at the

microscale, or given by hydrodynamic equations involving
fluctuating fields. In the latter case, the dynamics are either
obtained from a systematic coarse-graining procedure
[24–28] or directly postulated based on phenomenological
arguments [21,29–34].
In recent years, a large number of works focus on

developing a thermodynamic approach to active matter.
They are led by the search for generic observables to
quantify, classify, and predict the anomalous properties of
active systems. For instance, the pressure and chemical
potential allow one to distinguish systems depending on
whether or not they obey equations of state [35–38],
and each can be useful to predict phase diagrams [39,40].
Moreover, quantifying the irreversibility of the dynamics
enables us to locate where and when activity mainly
affects the system [30,41,42] and to explore the relation
between irreversibility and phase transitions [43,44].
This approach has motivated several experiments
to measure the dissipation associated with irreversibility
in various systems [45–48]. Furthermore, it is shown
that, for minimal active models, changing the dissipa-
tion by using a dynamical bias provides an alternative
route to clustering and collective motion in active
matter [49–53].
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Progress in building the thermodynamics of active matter
has been mainly achieved so far in particle-based descrip-
tions. Indeed, such dynamics bear a natural mechanical
interpretation of energy exchanges, with either an external
operator or the surrounding thermostat, in terms of forces and
displacements. The tools of stochastic thermodynamics, first
introduced in thermal systems [54,55] and then extended to
active ones [41,56–61], offer a framework to quantify
systematically work, heat, and entropy production from the
microscopic dynamics. They also allow one to describe the
consumption of chemical fuel, at the basis of self-propulsion,
in a thermodynamically consistent manner [62–64]. In con-
trast, though some hydrodynamic approaches consider cou-
pling with a momentum-conserving fluid [1,65–67], non-
equilibrium terms in many field dynamics do not rely on any
explicit mechanical force [21,29–32]. Then, a systematic
definition of how active systems exchange energy with their
environment at a coarse-grained level has been elusive: It
remains to build the energetics of active field theories.
A major breakthrough of stochastic thermodynamics is

to relate explicitly the irreversibility of the dynamics, as
measured by the divergence of forward and time-reversed
realizations, with the amount of energy dissipated in the
thermostat [54,55]. This connection holds only for thermo-
dynamically consistent dynamics, whose formulation is
constrained so that the connection to the underlying
thermostat is properly taken into account. Importantly,
the active field theories postulated only from symmetry
arguments do not generally satisfy these constraints a priori
[21,29–32]. Hence, it is unclear to what extent the measure
of irreversibility in these models, often referred to as
entropy production rate (EPR) and already evaluated in
previous works [30,42,68], actually provides relevant
information about energy dissipation.
Interestingly, linear irreversible thermodynamics (LIT)

provides a definition of dissipation in terms of the thermo-
dynamic forces and conjugated currents at a hydrodynamic
level [69]. After identifying the relevant forces and currents
for a given theory, the field dynamics are formulated by
postulating linear relations between them. These theories
were originally designed to capture the effect of external
drives, such as temperature gradients or electric fields, yet
extensions to systems with internal activity, such as active
gels, are shown to successfully reproduce the behavior of
living materials [70–72]. Though some active theories do
not follow linear force-current relations a priori, it is
tempting to draw analogies with LIT in order to system-
atically define dissipation in this broad class of dynamics
beyond active gels. The challenge is then to embed active
field theories with arbitrary nonequilibrium terms into the
specific structure of LIT, thus enforcing a thermodynami-
cally consistent framework. This task is nontrivial with the
benefit of drawing powerful generic results from thermo-
dynamic considerations.
In what follows, we offer a framework to evaluate the

energetic budget of active field theories. Starting from first

principles, we demonstrate how to define the heat rate
dissipated to the thermostat from the fluctuations of the
active fields. Importantly, we show that the heat rate can be
generically decomposed into a homogeneous background
contribution, independent of active fields, and a contribu-
tion given in terms of the statistics of the active fields. This
decomposition allows one to quantify how the structure and
dynamics of active fields affect where heat is dissipated,
thus opening the door to estimating and comparing the
energetic cost associated with different emerging orders. To
illustrate the relevance of our framework, we apply it to
field theories which capture the emergence of a phase
separation and/or a polar order. Overall, our results dem-
onstrate the ability to estimate the rate of energy required to
sustain a given active dynamics away from equilibrium.
Our approach relies on systematically constructing the

dynamics of a set of underlying fields, which drive the
system out of equilibrium, from that of the active field
dynamics based on the force-current relations of LIT.
Importantly, under nonrestrictive assumptions (see
Sec. II A), the evolution of active fields remains indepen-
dent of that of the driving fields: The latter are hidden
degrees of freedom that do not affect the emerging order.
This result leads us to show that the heat rate, whose
expression follows from the total EPR measuring the
irreversibility of both the active and driving fields, can
be evaluated from the fluctuations of active fields only.
Importantly, the heat rate is distinct from the EPR quanti-
fying the irreversibility of the active field dynamics alone,
which we refer to as the explicit EPR in what follows.
We analyze in detail the heat rate in two popular models

for active matter: (i) the dynamics of active phase separa-
tion, known as Active Model B [29,30], and (ii) the
dynamics of polar motile droplets [73,74]. For model (i),
we find that the heat rate mainly varies at the interfaces
between dense and dilute phases, where it reduces com-
pared to its bulk value. We further evaluate the heat-rate
scaling with noise amplitude and driving parameter. Our
results are compared with the explicit EPR, as an alternative
measure of the deviation from equilibrium [30,42,68]. The
analysis of model (ii) reveals that the rate of dissipated heat
varies across the profile of polar droplets. We also report a
hysteresis loop associated with the splitting and fusion of
multiple droplets, and we discuss the scaling with noise
amplitude and driving parameter.
The paper is organized as follows. First, we present in

Sec. II how to embed generic active field theories within
LIT and calculate the heat rate, which we then relate with
the explicit EPR in Sec. III. In Sec. III A, we consider an
application of our framework to dynamics that capture
active phase separation in terms of a conserved scalar field
[29,30]. To go beyond scalar field theories, we then study in
Sec. III B the dynamics of motile droplets coupling density
and polarization [73,74] as a prototypical model of
deformable living cells [75–77]. Finally, we present our
conclusions in Sec. IV.
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II. THE ROLE OF UNDERLYING RESERVOIRS

We consider active dynamics of hydrodynamic fields
which can be either obtained from explicit coarse graining
of microscopic dynamics or written phenomenologically
using symmetry arguments [1,3]. Our approach consists in
introducing additional fields, associated, for instance, with
chemical reactions which sustain the dynamics away from
equilibrium; see Fig. 1. This approach amounts to identi-
fying the nonequilibrium terms in the original dynamics as
a coupling to chemical reservoirs following the framework
of linear irreversible thermodynamics [69]. Below, we
present in detail the procedure to enforce a thermodynami-
cally consistent structure of the dynamics: first for a
conserved scalar field and then for generalized field
dynamics that couple a conserved scalar field and a
polarization field. The key in providing a thermodynamic
framework for active materials is to realize that such
materials are typically a part of a larger system, which
provides the drive needed to sustain nonequilibrium activ-
ity, as described in Fig. 1.

A. Coupling active and chemical fields

To introduce pedagogically our framework, we start by
considering the dynamics of a conserved scalar field ϕ
representing the density of active components:

_ϕ¼−∇ ·J; J¼−λ∇δF
δϕ

þΔμCþTνðCÞþΛ; ð1Þ

where F is the free energy, λ is the mobility, Δμ is the
driving coefficient, and C is a vector-valued function of ϕ
and its gradients. The noise term Λ is Gaussian with zero
mean and correlations given by

hΛαðr; tÞΛβðr0; t0Þi ¼ 2λTδαβδðr − r0Þδðt − t0Þ; ð2Þ

where T is the temperature of the surrounding heat bath.
The term Tν is a generalization of the spurious drift that
typically appears in ordinary stochastic differential equa-
tions with multiplicative noise. Its expression is determined
by that of C, it depends on both time and space discretiza-
tions, and it obviously vanishes when fluctuations are
neglected (T ¼ 0). In Appendix B, we generalize standard
results for stochastic processes [78] to stochastic field
theories and derive the expression for the spurious-drift
term. The dynamics (1) is used extensively to reproduce the
phase separation of active particles [26,27,29–32]. In these
works, the need for the additional term Tν is not addressed
explicitly, mainly because previous studies are not con-
cerned with thermodynamic consistency and also since the
noise Λ seems to be additive when considering only the
fluctuations of ϕ. When we describe below the origin of
Δμ, by introducing additional field dynamics, it becomes
apparent that the noise Λ is, in fact, multiplicative due to its
cross-correlation with the noise of the additional field, as
described in Eq. (4).
Our goal is to connect the emergent behavior of ϕ with

the underlying consumption of energy resources. To this
end, we describe explicitly the fluctuations of the degrees
of freedom at the basis of nonequilibrium drive, referred to
as chemical fields in what follows, though our framework
extends to other types of drive. Inspired by recent works
[68,79], we regard the driving coefficient Δμ as the
chemical potential difference between fuel and products
of a chemical reaction (see Fig. 1), which applies, for
instance, to the oxidation of hydrogen peroxide involved in
the self-propulsion of Janus colloids [15–17]. This
approach leads us to consider the dynamics of the chemical
coordinate n, which is (half) the difference between the
local number density of product molecules and that of the
fuel molecules (see Appendix A). It is described as a field
fluctuating in space and time, whileΔμ is kept constant and
homogeneous.
We aim at proposing a systematic method to couple the

active field ϕ and the underlying chemical field n. It relies
on the fact that the active system is a part of a large
nonequilibrium system that relaxes (slowly) toward equi-
librium. With this assumption, the explicit dynamics of n
can be deduced from LIT [34,69,72,80,81]. Identifying J
and −∇ðδF=δϕÞ as the current and the thermodynamic
force associated with ϕ, respectively, LIT states that the

FIG. 1. Schematic representation of an active system (blue) put
in contact with reservoirs of chemical fuel (red) and product
(green) which set a constant, homogeneous chemical potential
difference Δμ in the active system. This representation is
essentially a nonequilibrium grand-canonical ensemble for the
active system (details in the Appendix A). Within our framework,
Δμ embodies the driving parameter which controls the non-
equilibrium terms in the dynamics (1)–(4) for the active density
field ϕ and the rate of fuel consumption _n. The active system and
the chemical reservoirs are surrounded by the thermostat (yellow)
which maintains a fixed temperature T. The fluctuations of ϕ and
n lead to dissipation of heat Q into the thermostat, which
quantifies the energetic cost to maintain the whole system away
from equilibrium.
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currents fJ; _ng can be written as a linear combination of the
thermodynamic forces f−∇ðδF=δϕÞ;Δμg. It is clear from
Eq. (1) that the factor coupling the current J and the force
Δμ is directly given by C. Accordingly, and because ϕ is
even under time reversal, Onsager reciprocity relations
require that the coupling factor between the current _n and
the force −∇ðδF=δϕÞ is also C [82], so that the dynamics
of n follows as

_n ¼ γΔμ − C · ∇ δF
δϕ

þ TχðCÞ þ ξ; ð3Þ

where γ is the chemical mobility, which we take constant in
what follows. As a result of this assumption, the equation
for ϕ is autonomous and does not rely on knowing the
fluctuations of the chemical field n. The noise term ξ is
Gaussian with zero mean and correlations given by

hξðr; tÞξðr0; t0Þi ¼ 2γTδðr − r0Þδðt − t0Þ;
hΛαðr; tÞξðr0; t0Þi ¼ 2TCαðr; tÞδðr − r0Þδðt − t0Þ: ð4Þ

Note that, though LIT states linear relations between forces
and currents, the coupling factor C need not be linear with
respect to ϕ and its gradients.
It is convenient to introduce the Onsager matrix L, which

gives the coupling between forces and currents in dþ 1
dimensions. For d ¼ 3, it is given by

L ¼

2
6664

λ 0 0 Cx

0 λ 0 Cy

0 0 λ Cz

Cx Cy Cz γ

3
7775: ð5Þ

Then, the dynamics (1)–(4) can be expressed in a compact
form as [83]

½J; _n� ¼ L

�
−∇ δF

δϕ
;Δμ

�
þ T½ν; χ� þ ½Λ; ξ�; ð6Þ

where the noise correlations read

h½Λ; ξ�ðr; tÞ½Λ; ξ�⊺ðr0; t0Þi ¼ 2TLðr; tÞδðr− r0Þδðt− t0Þ ð7Þ

and ⊺ denotes transpose. The expression of fν; χg can be
obtained from that of the Onsager matrix L following a
systematic route, as detailed in Appendix B. In particular, it
depends on the choice of how the gradient terms appearing
in C are discretized in space; see Appendix B. In the
specific examples considered below, a judicious choice of
the discretization can be made such that the spurious drift
vanishes. Moreover, one can show that ν ¼ 0 for d ¼ 1 and
that fν; χg both vanish whenever C is a local function of ϕ
independent of its gradients.

The dynamics (1)–(4) is thermodynamically consistent
in the sense that it obeys detailed balance, and, thus, relaxes
to an equilibrium state at temperature T, when Δμ derives
from a given chemical free energy F ch so that Δμ ¼
−δF ch=δn [69,72,80,81]; see Appendix A. Equilibrium
relaxation also requires that the Onsager matrix is positive
semidefinite (detL ≥ 0). When considering the dynamics
within the active system,Δμ can be regarded as constant; see
the nonequilibrium grand-canonical ensemble described in
Appendix A. Then, the realizations of the active field ϕ are
independent of that of the chemical field n, and the dynamics
now operates away from equilibrium. Although the realiza-
tions of ϕ are independent of n, the presence of n determines
the existence of the spurious-drift term ν and, thus, affects the
ϕ dynamics.Within this grand-canonical description, _n is the
important field (rather than n), and it should be thought of as
the local rate of chemical reactions.

B. Dissipation and irreversibility

The nonequilibrium drive Δμ breaks time-reversal sym-
metry and leads to dissipation of energy in the form of heat
Q from the system to the surrounding thermostat.
Following stochastic thermodynamics [54,55,84], the heat
along a trajectory can be evaluated from the irreversibility
of the dynamics. It amounts to comparing the path
probabilities of the forward and time-reversed dynamics,
respectively, denoted P and PR, which quantify the
probability of observing a trajectory of the currents
fJ; _ng within a given time interval ½0; t�: [85]

Q ¼ T ln
P½fJ; _ngt0�
PR½fJ; _ngt0�

: ð8Þ

The steady-state heat rate _Q is then

_Q ¼ T

�
lim
t→∞

1

t
ln

P½fJ; _ngt0�
PR½fJ; _ngt0�

�
; ð9Þ

where the average is taken with respect to noise realization
(orP½fJ; _ngt0�). In equilibrium, the dynamics are symmetric
under time reversal with the same statistics for forward and
backward trajectories (P ¼ PR), so that the system does
not dissipate any heat ( _Q ¼ 0). In the presence of non-
equilibrium drive in steady state, time-reversal symmetry is
broken (P ≠ PR), which yields a constant rate of dissipa-
tion in steady state ( _Q > 0).
The irreversibility of the dynamics can also be evaluated

at the level of active field alone:

S ¼
�
lim
t→∞

1

t
ln

P½fJgt0�
PR½fJgt0�

�
: ð10Þ

The irreversibility measure S, referred to as explicit entropy
production rate in what follows, is evaluated in various
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active dynamics, either particle-based [41,56,57,59,60,62]
or field theories [30,42,68], to assess unambiguously the
deviation from equilibrium. Our approach differs in that we
account not only for the irreversibility of active fields, but
also for that of underlying chemical degrees of freedom. In
this extended phase space, provided that it accounts for all
the relevant hydrodynamic fields, the irreversibility indeed
measures the heat dissipated by the entire system.
Following standard procedures [89–91], the dynamic

action A which sets the path probability P ∼ e−A reads

A ¼ 1

4T

Z
t

0

Z
V

�
½J; _n� þ L

�
∇ δF

δϕ
;−Δμ

��

× L−1
�
½J; _n� þ L

�
∇ δF

δϕ
;−Δμ

��
⊺
drds; ð11Þ

where
R
V is a spatial integral over the whole volume V of

the system and L−1 is the inverse of L. We regard the
currents fJ; _ng and forces f−∇ðδF=δϕÞ;Δμg as odd and
even under time reversal, respectively. The action for the
time-reversed dynamics AR is then deduced readily from
Eq. (11) by flipping the sign of ½J; _n�. Substituting P ∼ e−A

and PR ∼ e−A
R
into Eq. (9), the dissipation rate follows

from straightforward algebra as (see Appendix C)

_Q ¼
Z
V

��
_nΔμ − J ·∇ δF

δϕ

��
t
dr; ð12Þ

where limt→∞
1
t

R
t
0 ·≡ h·it is the steady-state time average.

For ergodic systems, the two averages are the same and one
may be omitted. Hereafter, we use h·i to denote both
averages. The expression (12) features the sum of products
between thermodynamic forces and conjugate currents,
analogously to the dissipation rate in LIT [34,69,72,80,81]:
This result confirms that we embed active field theories
within a thermodynamically consistent framework. Note
that the product is interpreted here and in what follows with
Stratonovich convention.
Integrating by parts the second term in Eq. (12) and using

_ϕ ¼ −∇ · J, we get
R
VhJ ·∇ðδF=δϕÞidr ¼ dhF i=dt,

which vanishes in steady state, yielding

_Q ¼
Z
V
h _nΔμidr: ð13Þ

As a result, the steady-state heat rate _Q equals the rate of
work injected by the nonequilibrium drive Δμ to sustain the
dynamics away from equilibrium: This result is equivalent
to the first law of thermodynamics, as expected when the
path probabilities include all thermodynamically relevant
fields. The expression (13) would actually be the same if
instead _n was held constant and Δμ allowed to fluctuate.
For an equilibrium dynamics where Δμ derives from the
chemical free energy F ch (Δμ ¼ −δF ch=δn), the heat rate

vanishes in steady state ( _Q ¼ −dhF chi=dt ¼ 0), as
expected.
Substituting the chemical dynamics (3) in Eq. (13), we

deduce

_Q ¼ γVΔμ2 − Δμ
Z
V

�
C · ∇ δF

δϕ
− TχðCÞ

�
dr: ð14Þ

Hence, the heat rate can be separated into (i) a homo-
geneous contribution γVΔμ2 corresponding to a back-
ground term independent of the fluctuations of the active
and chemical fields fϕ; ng and (ii) a contribution deter-
mined only by the fluctuations of the active field ϕ, namely,
independent of that of n. The existence of n, however, is
crucial in determining the form of the heat rate. The
importance of n becomes clear below when we compare
the heat rate with the explicit EPR, in which the dynamics
of n are not accounted for; see Eq. (26). Note that fast-
relaxing fields which are deliberately omitted in our
hydrodynamic description can contribute to the heat rate
only through an additional background term. Interestingly,
this homogeneous contribution is eliminated when consid-
ering the difference of heat rates at constant Δμ, for
instance, by changing parameters of the free energy F :
The heat-rate difference then depends only on how the
fluctuations of the active field ϕ vary with such parameters.

C. Generalized field dynamics

To demonstrate that our framework is indeed relevant for
a large class of active field theories, we now consider the
coupled dynamics of a conserved scalar field ϕ and a polar
field p:

_ϕ ¼ −∇ · J;

J ¼ −λϕ∇ δF
δϕ

þ ΔϕCϕ þ TνϕðCϕÞ þ Λϕ;

_p ¼ −λp
δF
δp

þ ΔpCp þ TνpðCpÞ þ Λp; ð15Þ

where λΩ and ΔΩ are, respectively, the mobility and the
constant driving coefficient for Ω ∈ fϕ; pg and CΩ depend
on fϕ;pg and their gradients. The noise term ΛΩ is
Gaussian with zero mean and correlations given by

hΛΩ;αðr; tÞΛΩ0;βðr0; t0Þi ¼ 2λΩTδαβδΩΩ0δðr − r0Þδðt − t0Þ:
ð16Þ

In what follows, we assume that Δϕ and Δp are indepen-
dent, so that each one of νΩ is determined only by the
corresponding CΩ. The dynamics (15) and (16) typically
describe the coarse-grained dynamics of polar agents,
ranging from vibrated grains [18,19] to bird flocks
[20,21] and aligning bacteria [92,93]. In practice, the
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dissipation rate for systems featuring other types of order
parameters, such as a nematic tensor [94–97] or a non-
conserved scalar field [98], extends straightforwardly from
the results detailed below for the specific dynamics (15)
and (16). Note that in all these examples both ϕ and p are
structural order parameters and are, therefore, even under
time reversal.
The spurious-drift terms TνΩ were not considered in

previous work. In what follows, we address cases where the
driving coefficients ΔΩ are either odd or even under time
reversal, and we assume that even (odd) driving represents
a chemical potential difference ΔΩ ¼ ΔμΩ (chemical cur-
rent ΔΩ ¼ _nΩ=γΩ). We show in Appendix B that the
expression for νΩ in terms of CΩ depends on the choice
for the parity of ΔΩ. Besides, we put forward explicit cases
where νΩ vanishes for judicious choices of the spatial
discretization of gradient terms in CΩ.
With the assumption that the fields fϕ;pg are even under

time reversal, LIT enforces that the form of the chemical
dynamics is identical for either choice ΔΩ ¼ ΔμΩ or ΔΩ ¼
_nΩ=γΩ [34,69,72,80,81]:

_nϕ ¼ γϕΔμϕ − Cϕ ·∇ δF
δϕ

þ TχϕðCϕÞ þ ξϕ;

_np ¼ γpΔμp − Cp ·
δF
δp

þ TχpðCpÞ þ ξp; ð17Þ

where γΩ is the chemical mobility and ξΩ is a zero-mean
Gaussian noise with correlations

hξΩðr; tÞξΩ0 ðr0; t0Þi ¼ 2γΩTδΩΩ0δðr − r0Þδðt − t0Þ: ð18Þ

The noises ξΩ and ΛΩ are correlated only if the driving is
even (ΔΩ ¼ ΔμΩ), in which case

hΛΩ;αðr; tÞξΩ0 ðr0; t0Þi ¼ 2TCΩ;αðr; tÞδΩΩ0δðr − r0Þδðt − t0Þ:
ð19Þ

The expression of χΩ follows from that ofCΩ, as detailed in
Appendix B, and it differs according to whether ΔΩ ¼ ΔμΩ
or ΔΩ ¼ _nΩ=γΩ. We stress that in both cases the realiza-
tions of the active fields fϕ;pg are independent of the
chemical dynamics (17). An alternative formulation of the
dynamics, not considered explicitly here, consists in taking
fluctuating ΔΩ in Eq. (15) and setting the conjugated
chemical degree of freedom constant. Within this formu-
lation, the chemical dynamics affects directly the active
field dynamics, but the results for the heat rate below
remain the same; namely, they depend only on the driving
mechanism and not on how it affects the active dynamics.
The steady-state heat rate is now defined by

_Q ¼ T

�
lim
t→∞

1

t
ln

P½fJ; _p; _nϕ; _npgt0�
PR½fJ; _p; _nϕ; _npgt0�

�
; ð20Þ

and it can be obtained following a similar procedure as that
in Sec. II B. It again differs from the explicit entropy
production rate S given by

S ¼
�
lim
t→∞

1

t
ln

P½fJ; _pgt0�
PR½fJ; _pgt0�

�
: ð21Þ

Identifying the thermodynamic forces and their conjugated
currents as f−∇ðδF=δϕÞ;Δμϕ;−δF=δp;Δμpg and
fJ; _nϕ; _p; _npg, respectively, we get

_Q ¼
X

Ω∈fϕ;pg

Z
V
h _nΩΔμΩidr: ð22Þ

The expression (22) is then valid for either ΔΩ ¼ ΔμΩ or
ΔΩ ¼ _nΩ=γΩ. It extends to an arbitrary number of active
fields, potentially including other types of order parameters
such as nematic tensors, and it remains valid when each
active field couples to several chemical fields; see
Appendix C: For any of these cases, the heat rate actually
follows directly from the dynamics of _nΩ.
Substituting the chemical dynamics (17) in Eq. (22),

when ΔΩ is a force (ΔΩ ¼ ΔμΩ), we get

_Q ¼ γϕVΔμ2ϕ −Δμϕ
Z
V

�
Cϕ ·∇ δF

δϕ
− TχϕðCϕÞ

�
dr

þ γpVΔμ2p −Δμp
Z
V

�
Cp ·

δF
δp

− TχpðCpÞ
�
dr: ð23Þ

When ΔΩ is a current (ΔΩ ¼ _nΩ=γΩ), we get instead

_Q ¼ V _n2ϕ
γϕ

þ _nϕ
γϕ

Z
V

�
Cϕ ·∇ δF

δϕ
− TχϕðCϕÞ

�
dr

þ V _n2p
γp

þ _np
γp

Z
V

�
Cp ·

δF
δp

− TχpðCpÞ
�
dr: ð24Þ

In general,Δϕ andΔp need not have the same parity, so that
the heat rate can be a combination of the forms given in
Eqs. (23) and (24).

III. APPLICATIONS TO ILLUSTRATIVE FIELD
THEORIES

Before applying our generic theory to quantify the heat
rate in specific models, we compare the heat rate (14) with a
measure of deviation from equilibrium obtained in previous
works [30,42,68]. Substituting in Eq. (14) the expression of
∇ðδF=δϕÞ taken from the dynamics (1) yields

_Q ¼ TS þ Δμ2

λ

Z
V
ðλγ − hC2iÞdr

þ TΔμ
Z
V

�
χðCÞ − 1

λ
C · νðCÞ − 1

Tλ
C · Λ

�
dr: ð25Þ
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Because previous works do not account for the spurious-
drift terms, a proper comparison requires consideration of
the special case in which fν; χg ¼ f0; 0g andR
VhC · Λidr ¼ 0. These expressions depend on the spatial
discretization scheme. In Appendix B, we provide a recipe
for calculating these expressions and give examples in
which they vanish. In such cases,

_Q ¼ TS þ Δμ2

λ

Z
V
ðλγ − hC2iÞdr; ð26Þ

and the explicit entropy production rate S, which is also
computed in previous studies [30,42,68], reads

S ¼ Δμ
λT

Z
V
hJ ·Cidr: ð27Þ

Therefore, Eq. (26) provides a connection between the
thermodynamic heat rate _Q and the explicit entropy
production rate S. From the semipositivity of the
Onsager matrix L, which ensures detL ¼ λγ −C2 ≥ 0, it
then follows that TS is a lower bound to _Q. The bound is
saturated when J and _n are proportional (detL ¼ 0): In
such a case, the fluctuations of _n are slaved to that of J, so
that the irreversibility of the whole dynamics can be found
from trajectories of J alone.
For the generalized field dynamics that includes the

dynamics of both ϕ and p, we again consider the case
in which fνΩ; χΩg ¼ f0; 0g and

R
VhCΩ · ΛΩidr ¼ 0.

Then, substituting in Eq. (23) the expression of
f∇ðδF=δϕÞ; δF=δpg taken from the dynamics (15) for
ΔΩ ¼ ΔμΩ, we get

_Q ¼ TS þ
Z
V

�Δμ2ϕ
λϕ

ðλϕγϕ − hC2
ϕiÞ

þ Δμ2p
λp

ðλpγp − hC2
piÞ

�
dr; ð28Þ

where

S ¼
Z
V

�
Δμϕ
λϕT

hJ ·Cϕi þ
Δμp
λpT

h _p · Cpi
�
dr: ð29Þ

This result shows explicitly the difference between the heat
rate _Q and the explicit entropy production rateS, similarly to
(26). For ΔΩ ¼ _nΩ=γΩ, we have instead

_Q ¼ V

�
_n2ϕ
γϕ

þ _n2p
γp

	
þ TS; ð30Þ

in which case the heat rate differs from the explicit entropy
production rate by a background term.

We are now in the position to apply our generic theory to
two popular active field theories: (i) the dynamics of a
conserved scalar field which reproduces active phase
separation and (ii) the coupled dynamics of a conserved
scalar field and a nonconserved polar field that captures the
behavior of motile deformable droplets.

A. Active phase separation

To illustrate how our framework can quantify the heat
rate to sustain a phase separation away from equilibrium,
we consider a popular active field theory for a conserved
scalar field ϕ that is even under time reversal, known as
Active Model B [29,30]. Taking the coupling term as C ¼
−∇ð∇ϕÞ2 in Eq. (1) recovers the dynamical equation of
Active Model B whenever the spurious-drift term Tν
vanishes. From symmetry arguments, this coupling term
is the lowest order in gradients and in ϕ which cannot be
integrated into a free energy [26,27,29,30]. A term of the
form ð∇ϕÞð∇2ϕÞ is potentially present at the same order as
∇ð∇ϕÞ2 [30–32], yet both terms are equivalent in one
spatial dimension, as we consider below.
The spurious-drift terms fTν; Tχg appearing in dynam-

ics (1)–(4) vanish when choosing a specific spatial dis-
cretization, as shown in Appendix B. Then, there is no need
to actually modify the dynamical equation already used in
Refs. [29,30] to embed Active Model B in a thermody-
namically consistent framework. For a constant chemical
potential difference Δμ, the dynamics follows as

_ϕ ¼ ∂x

�
∂x

δF
δϕ

þ Δμ∂xð∂xϕÞ2 þ Λ
�
;

_n ¼ γΔμþ ½∂xð∂xϕÞ2�∂x
δF
δϕ

þ ξ; ð31Þ

where we set the mobility λ ¼ 1 and fΛ; ξg are zero-mean
Gaussian white noises with correlations proportional to the
temperature T, as given in Eqs. (2) and (4). The free energy
F captures a phase separation between dilute and dense
regions:

F ¼
Z �

fðϕÞ þ κ

2
ð∂xϕÞ2

�
dx; fðϕÞ ¼ a

2
ϕ2 þ b

4
ϕ4:

ð32Þ

In what follows, most of our results are valid for a generic
f, and the specific form (32) is used for explicit evalu-
ation only.
The corresponding heat rate, as given in Eq. (14), reads

_Q ¼ γVΔμ2 þ
Z
V
_qdx; _q ¼ Δμ

�
½∂xð∂xϕÞ2�∂x

δF
δϕ

�
:

ð33Þ
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The heat rate quantifies the irreversibility of the whole
dynamics based on trajectories of the active current J and of
the chemical current _n; see Eq. (9). The heat-rate profile
_qðxÞ depends on the details of the dynamics via the
parameters of the free energy F, the driving coefficient
Δμ, and the temperature T which controls the amplitude of
fluctuations. For strong fluctuations, namely, high temper-
ature T, we expect the heat rate to be uniformly dissipated
in the system, with only a weak dependence on the details
of the density profile. Conversely, in the regime of small T,
the local heat rate should reveal the salient features of the
density profile which require energy to be sustained.
To explore the connection between density profile and

heat rate, we then rely on a small-noise treatment of the
dynamics. Given that Eq. (33) is fully determined by the
fluctuations of ϕ, independently of that of n, we focus on
the dynamics of ϕ alone. Expanding the density field as
ϕ ¼ ϕ0 þ

ffiffiffiffi
T

p
ϕ1 þ Tϕ2 þOðT3=2Þ and substituting this

ansatz in Eq. (31), the leading-order equation yields the
deterministic mean-field dynamics:

_ϕ0 ¼ ∂2
x½D0 þ Δμð∂xϕ0Þ2�; D0 ¼ f00 − κ∂2

xϕ0; ð34Þ

where fðnÞ0 ¼ dnf=dϕn at ϕ ¼ ϕ0. Hence, ϕ0 relaxes to a
steady-state profile which can either be uniform or com-
prising phase-separated domains depending on free-energy
parameters in Eq. (32), the global density ð1=VÞ RV ϕðxÞdx,
and the driving parameter Δμ [30,31]. At higher orders, ϕ1

and ϕ2 follow a set of coupled stochastic dynamics given,
respectively, by

_ϕ1 ¼ ∂2
x½D1 þ 2Δμð∂xϕ1Þð∂xϕ0Þ� þ ∂xΛ0;

_ϕ2 ¼ ∂2
xfD2 þ Δμ½2ð∂xϕ2Þð∂xϕ0Þ þ ð∂xϕ1Þ2�g; ð35Þ

where

D1 ¼ ðf000 − κ∂2
xÞϕ1; D2 ¼ ðf000 − κ∂2

xÞϕ2 þ f0000 ϕ
2
1=2;

ð36Þ

and Λ0 is a zero-mean Gaussian white noise with corre-
lations hΛ0ðx; tÞΛ0ðx0; t0Þi ¼ 2δðx − x0Þδðt − t0Þ. Owing to
the linearity of D1 in Eqs. (35) and (36), ϕ1 has Gaussian
fluctuations. Substituting the density ansatz in Eq. (33),
we get

_q ¼ ε0 þ Tε1 þOðT2Þ; ð37Þ

where

ε0 ¼ −Δμð∂xϕ0Þ2∂2
xD0;

ε1 ¼ −Δμ½hð∂xϕ1Þ2i∂2
xD0 þ 2ð∂xϕ0Þhð∂xϕ1Þ∂2

xD1i
þ ð∂xϕ0Þ2h∂2

xD2i þ 2ð∂xϕ0Þh∂xϕ2i∂2
xD0�: ð38Þ

The expressions (37) and (38) give the leading orders of
heat rate at small noise for an arbitrary f.
For a homogeneous profile [ϕ0ðxÞ ¼ cst], the leading

and first orders of the small noise expansion (37) and (38)
vanish (ε0 ¼ 0 and ε1 ¼ 0). Then, the nontrivial contribu-
tion to heat rate _Q − γVΔμ2 scales like T2 at small T, and it
also behaves like Δμ2 at small Δμ, as confirmed by the
numerical results in Figs. 2(a) and 2(b). Therefore, in the
absence of any density pattern, one can make _Q − γVΔμ2
arbitrarily small by reducing either the amplitude of
fluctuations T or the driving parameter Δμ. In particular,
at vanishing T, the uniform density profile is identical to
that of Passive Model B, namely, for Δμ ¼ 0, which
explains why _Q − γVΔμ2 also vanishes.
Previous works quantify irreversibility based on trajec-

tories of the active current J only [30,68], without con-
sidering that of the chemical current _n:

TS ¼
Z
V
σdx; σ ¼ −ΔμhJ∂xð∂xϕÞ2i; ð39Þ

as defined in Eq. (27). The irreversibility measure TS has
similar scalings as that of _Q − γVΔμ2 at small T and small

Numerics Numerics

FIG. 2. In the absence of phase separation, namely, for a
homogeneous average profile of density [hϕðxÞi ¼ cst], the
nontrivial contribution to heat rate _Q − γVΔμ2 and the density
field irreversibility TS scale like T2 at small temperature T and as
Δμ2 at small driving parameter Δμ, as shown, respectively, in (a)
and (b), where solid lines are guide lines. Their difference also
exhibits similar scalings in these regimes, as shown in (c),(d), and
it is in good agreement with our prediction (C13) reported in
black solid lines. Simulation details are in Appendix D. Param-
eters: −a ¼ b ¼ 0.25, κ ¼ 4, ϕ̄ ¼ 1, V ¼ 128, (a),(c) T ¼ 10−3,
and (b),(d) Δμ ¼ 1.
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Δμ, as shown in Figs. 2(a) and 2(b). Interestingly, while the
heat rate _Q converges to the finite value γVΔμ2 at zero T,
the irreversibility measure TS vanishes in this limit: The
former captures the consumption of underlying chemicals,
whereas the latter sees only an effective equilibrium
dynamics. Moreover, the difference between TS and _Q −
γVΔμ2 isΔμ2

R
Vh½∂xð∂xϕÞ2�2idx according to Eq. (26). We

compute analytically this difference in Appendix C to show
that it also scales like T2 and Δμ2 at small T and small Δμ,
respectively, as confirmed by our numerics in Figs. 2(c)
and 2(d).
For a phase-separated profile [ϕ0ðxÞ ≠ cst], as shown in

Figs. 3(a) and 3(b), the leading order of _Q − γVΔμ2 scales
like T0, since now ε0 ≠ 0, and it reaches a finite value at
T ¼ 0. Hence, the heat rate _Q is not only determined by the
background term γVΔμ2 at zero temperature, it now also
depends on the mean-field density profile. In contrast, TS
scales like T and, thus, vanishes at T ¼ 0 [see Fig. 3(c)], as
already reported in Ref. [30]. The different scalings of _Q
and TS in this regime reveal that the former is affected by

the existence of two separated phases, whereas the latter
does not allow one to distinguish the active phase sepa-
ration from its passive counterpart. This result clearly
illustrates that the irreversibility shown by the active current
J alone, when the underlying chemical flux _n is not
monitored, cannot capture the full energetic cost of creating
phase separation away from equilibrium. In other words, if
one were to propose TS as a thermodynamically consistent
measure of the full energetic cost, based on the explicit
entropy production rate S which discards the driving field
fluctuations, then a nonequilibrium phase separation could
be sustained at zero cost, in contradiction with the basics of
thermodynamics.
The heat profile _qðxÞ given in Eq. (33) not only provides

information about where heat is dissipated, it also quan-
tifies how the average chemical current h _nðxÞi varies in
space. At small temperature, it is constant in the dense and
dilute phases, where the density profile is flat, and it has a
nonmonotonic behavior across the interface, as shown in
Fig. 3(a): The system dissipates less heat at the interface
than in the bulk, and it does so by reducing locally the
chemical current to accommodate for density gradients.
Likewise, the profile σðxÞ in Eq. (39) is flat in the bulk and
varies strongly at the interface [30]. Yet, now both the bulk
and interface contributions vanish at zero temperature [see
Fig. 3(b)], consistently with the fact that TS vanishes in this
regime. Moreover, both TS and _Q − γVΔμ2 scale as Δμ2
for small Δμ, as shown in Fig. 3(d), similarly to the case of
a homogeneous density profile: The energetic cost _Q and
the irreversibility measure TS vanish at zero Δμ, since
Active Model B becomes Passive Model B in this regime.

B. Motile polar droplets

As a second example of how our formalism may be used,
we now turn to study the coupled dynamics of a polar field
p and a scalar field ϕ. In our case, they represent the local
polarization and density of active components, respectively,
for instance, self-propelled particles with aligning inter-
actions [18–20], and are even under time reversal. Our aim
is to capture the emergence of complex order beyond the
case of a phase separation, already discussed in Sec. III A,
by incorporating the possibility of observing a nonequili-
brium polar order [33,34]. We focus on dynamics with one
spatial dimension for simplicity. A minimal ingredient to
allow for a nonequilibrium advection of the fields then
consists in taking the coupling terms as Cϕ ¼ ϕp and Cp ¼
−p∂xp in Eq. (15). When the spurious-drift terms fνϕ; νpg
vanish, one recovers the dynamical equations used to
model actomyosin droplets in the absence of hydrodynamic
flow, e.g., due to substrate friction, as detailed in Ref. [73],
for instance. In general, such a type of coupling terms
appears naturally when coarse graining the dynamics of
aligning active agents [24,25], and they also follow from
symmetry arguments [21].

FIG. 3. (a),(b) The average profile of density hϕðxÞi shows a
separation between dilute [hϕðxÞi < 0] and dense [hϕðxÞi > 0]
phases. The corresponding profiles of heat rate _qðxÞ and of
irreversibility measure σðxÞ, given, respectively, in Eqs. (33) and
(39), are flat in bulk regions and vary rapidly across the interface.
(c) The nontrivial contribution to heat rate _Q − γVΔμ2 ¼ R

V _qdx
reaches a finite value at T ¼ 0, whereas the irreversibility measure
TS ¼ R

V σdx vanishes. (d) _Q − γVΔμ2 and TS increase and
decrease, respectively, with the driving parameter Δμ, and both
scale as Δμ2. Simulation details in Appendix D. Parameters:
−a¼b¼0.25, κ ¼ 4, ϕ̄¼ 0, V¼ 128, (a),(b) fΔμ;Tg¼
f2;10−2g, (c) Δμ ¼ 1, and (d) T ¼ 10−3.
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To show that our framework is also applicable for odd
driving, we now choose to treat constant chemical currents,
namely, Δϕ ¼ _nϕ=γϕ and Δp ¼ _np=γp. The spurious-drift
terms fνϕ; χϕ; νp; χpg in Eqs. (15)–(19) all vanish when
choosing an appropriate spatial discretization, as detailed in
Appendix B. The dynamics are then given by

_ϕ ¼ ∂x

�
∂x

δF
δϕ

− _nϕϕpþ Λϕ

	
;

_nϕ ¼ Δμϕ − ϕp∂x
δF
δϕ

þ ξϕ; ð40Þ

and

_p ¼ −
δF
δp

− _npp∂xpþ Λp;

_np ¼ Δμp þ pð∂xpÞ
δF
δp

þ ξp: ð41Þ

We set the mobilities fλϕ; λp; γϕ; γpg all equal to 1, and
fΛϕ;Λp; ξϕ; ξpg are zero-mean Gaussian white noises with
correlations proportional to T, as given in Eqs. (16), (18),
and (19). Inspired by recent works [73,74], we take the free
energy F, which leads to the formation of motile and
quiescent regions:

F ¼
Z �

fðϕ; pÞ þ κ

2
ð∂xϕÞ2 þ

K
2
ð∂xpÞ2

�
dx;

fðϕ; pÞ ¼ a
4
ϕ2ðϕ − 2ϕ̄Þ2 þ A

4
p2½p2 þ 2ðϕ̄ − ϕÞ�; ð42Þ

where the coefficients fa; ϕ̄; A; K; κg are all positive.
At equilibrium ( _nϕ ¼ 0 and _np ¼ 0), the system undergoes
a phase separation whenever the global density
ð1=VÞ RV ϕðxÞdx is positive and less than ϕd ¼
ϕ̄½1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A=ð2aϕ̄2Þ

p
�, yielding coexistence between the

dilute isotropic phase fϕ; pg ¼ f0; 0g and the dense polar
phase fϕ; pg ¼ fϕd;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϕd − ϕ̄

p
g.

The associated heat rate (24) reads

_Q ¼ Vð _n2ϕ þ _n2pÞ þ
Z
V
_qdx;

_q ¼ _nϕ

�
ϕp∂x

δF
δϕ

�
− _np

�
pð∂xpÞ

δF
δp

�
: ð43Þ

To explore how the heat rate behaves at small temperature
T, we again expand the fields as ϕ ¼ ϕ0 þ

ffiffiffiffi
T

p
ϕ1 þOðTÞ

and p ¼ p0 þ
ffiffiffiffi
T

p
p1 þOðTÞ. The mean-field dynamics

follows from Eqs. (40) and (41) as

_ϕ0 þ _nϕ∂xðϕ0p0Þ ¼ ∂2
xDϕ;0; Dϕ;0 ¼ fϕ − κ∇2ϕ0;

_p0 þ _npp0∂xp0 ¼ −Dp;0; Dp;0 ¼ fp − K∇2p0;

ð44Þ

where fΩ ¼ ∂Ωfðϕ0; p0Þ for Ω ∈ fϕ; pg. The first correc-
tion to the mean-field profile reads

_ϕ1 þ _nϕ∂xðϕ0p1 þ ϕ1p0Þ ¼ ∂2
xDϕ;1 þ ∂xΛϕ;0;

_p1 þ _npðp0∂xp1 þ p1∂xp0Þ ¼ −Dp;1 þ Λp;0; ð45Þ

in terms of

Dϕ;1 ¼ ðfϕϕ − κ∂2
xÞϕ1 þ fϕpp1;

Dp;1 ¼ ðfpp − K∂2
xÞp1 þ fϕpϕ1; ð46Þ

where ΛΩ;0 are zero-mean Gaussian white noises with
correlations hΛΩ;0ðx;tÞΛΩ0;0ðx0;t0Þi¼2δΩΩ0δðx−x0Þδðt−t0Þ.
As for the expansion in Sec. III A, the active fields at first
order fϕ1; p1g have Gaussian statistics. The heat rate (43)
can then be expanded in the form (37), where fε0; ε1g
now read

ε0 ¼ _nϕϕ0p0∂xDϕ;0 − _npp0ð∂xp0ÞDp;0;

ε1 ¼ _nϕ½hϕ1p1i∂xDϕ;0 þ hðϕ1p0 þ ϕ0p1Þ∂xDϕ;1i�
− _np½hp1∂xp1iDp;0 þ hðp1∂xp0 þ p0∂xp1ÞDp;1i�:

ð47Þ

As a result, Eq. (47) provides the leading orders of heat rate
at small temperature for a given free-energy density f.
In the homogeneous state [ϕ0ðxÞ ¼ cst and p0ðxÞ ¼ cst],

the mean-field contribution to _Q − Vð _n2ϕ þ _n2pÞ vanishes
(ε0 ¼ 0), yet the first-order correction provides a nonzero
contribution (ε1 ≠ 0): The nontrivial contribution to heat
rate _Q − Vð _n2ϕ þ _n2pÞ scales like T, in line with what is

FIG. 4. In the absence of a droplet, namely, for homogeneous
average profiles of density [hϕðxÞi ¼ cst] and polarization
[hpðxÞi ¼ cst], the nontrivial contribution to heat rate _Q −
2V _n2 scales like T2 at small temperature T and as _n2 at small
driving parameter _nϕ ¼ _np ≡ _n. The numerical measurements get
closer to our analytical predictions (C18), shown, respectively, in
markers and solid lines, when the lattice spacing Δx decreases, as
expected. Simulation details are in Appendix D. Parameters:
a ¼ A ¼ κ ¼ K ¼ ϕ̄ ¼ 1, T ¼ 10−3, and V ¼ 64.
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found in Ref. [68] and in contrast with the T2 scaling for the
conserved dynamics of the scalar field ϕ in Sec. III A. We
compute analytically this contribution in terms of the
dynamical parameters, as detailed in Appendix C. For
simplicity, we choose the driving parameters in the dynam-
ics of ϕ and p to be equal ( _nϕ ¼ _np ≡ _n), in which case

_Q − 2V _n2 behaves as _n2: This scaling is confirmed by our
numerical results in Fig. 4. Note that our analytical result
[see Eq. (C18)] depends on the lattice spacing through an
ultraviolet cutoff.
For a droplet state [ϕ0ðxÞ ≠ cst and p0ðxÞ ≠ cst], as

shown in Fig. 5(a), _Q − 2V _n2 scales like T0, since the
leading order is now determined by ε0 ≠ 0. Analogously to
the phase-separated state in Sec. III A, such a scaling
implies that the heat rate _Q depends on the details of
the density and polarization profiles even at vanishing
temperature. Increasing the value of _n splits the droplet into
several ones which move in the same direction with a fixed
separating distance, as shown in Fig. 5(b). For one droplet,
the heat profile _qðxÞ in Eq. (43) is peaked with negative
values at the droplet interface, and it increases continuously
with positive values from tail to head; see Fig. 5(c).
This behavior is qualitatively similar for two droplets;
see Fig. 5(d). In contrast with the case of a purely scalar
field theory in Sec. III A, the heat profile is now nonzero
not only at the interface, but also in the dense phase: This
difference stems from the density and polarization profiles
of droplets being nonflat. Moreover, the fact that _qðxÞ can
have both signs illustrates that the local heat rate can be
either above or below the background dissipation 2_n2.
Therefore, _qðxÞ − 2_n2 can potentially be negative locally,
as long as the overall heat rate _Q stays positive, which
corresponds to extracting energy from the thermostat at
specific locations.
Interestingly, _Q − 2V _n2 as a function of _n displays a

discontinuity when the number of droplets varies; see
the transition between one and two droplets reported in
Fig. 5(e). This discontinuity shows that the total heat rate is
strongly affected by the transition between different pat-
terns; hence, it can potentially be regarded as a relevant
observable to characterize transitions, in line with previous
results in particle-based active dynamics [43,44]. Varying _n
linearly in time, we observe a hysteretic behavior so that the
area of the loop in _Q − 2V _n2 vs _n space increases with the
driving parameter velocity d _n=dt. Moreover, Fig. 5(f)
confirms that _Q − 2V _n2 scales like T0 at small noise, as
predicted analytically.

IV. CONCLUSION

Building the thermodynamics of active matter is a major
challenge of modern nonequilibrium statistical mechanics.
By combining first-principles and phenomenological argu-
ments, it aims at quantifying and predicting anomalous
properties in terms of a few well-chosen observables [35–
38,43,44,50,51]. Following this route, the irreversibility of
active dynamics has recently attracted much attention, since
it provides an unambiguous measure of the distance from
equilibrium: It is quantified by the explicit EPR, which
compares forward and time-reversed realizations of the
dynamics [30,41,42,56–60,62,68].

FIG. 5. (a),(b) The average profiles of density hϕðxÞi and
polarization hpðxÞi, reported in the comoving frame of droplets
moving toward x > 0, show that polarization is nonzero only
within droplets and its profile has a front-tail asymmetry. For
multiple droplets, each one of them moves at the same velocity
with a fixed separation distance. (c),(d) The corresponding
average profiles of heat rate _qðxÞ, given in Eq. (43), are negative
at the interface and increase monotonically from the tail to the
front of each droplet. (e) The nontrivial contribution to heat rate
_Q − 2V _n2 ¼ R

V _qdx increases with the driving parameter _nϕ ¼
_np ≡ _n of the motile polar droplets. Above a critical value of _n,
when the droplet splits into two droplets, we observe a dis-
continuity of _Q − 2V _n2 associated with a hysteresis loop whose
area increases with the speed at which _n varies. (f) _Q − 2V _n2

reaches a finite value at T ¼ 0. Simulation details are in
Appendix D. Parameters: a ¼ A ¼ κ ¼ K ¼ ϕ̄ ¼ 1, V ¼ 196,
(a)–(e) T ¼ 10−3, and (f) _n ¼ 0.4.

THERMODYNAMICS OF ACTIVE FIELD THEORIES: … PHYS. REV. X 11, 021057 (2021)

021057-11



At microscopic level, the particle-based EPR can be
related to the amount of heat dissipated by the system,
though this relation can be more intricate for active systems
[60] than for thermal ones [54,55]. At the hydrodynamic
level, the connection between heat and explicit EPR is
generally lost, so that the physical motivation for evaluating
the explicit EPR in active field theories is sometimes
unclear. Indeed, the heat rate is proportional to the total
EPR provided that the latter measures the irreversibility of
all hydrodynamic fields [54,55]. In contrast, the explicit
EPR, which focuses on the irreversibility of active fields
alone and discards the fluctuations of underlying driving
fields, captures only a partial contribution to the heat rate.
In practice, evaluating the total heat rate is then a challenge
of modeling properly the coupling between active and
driving fields.
In this paper, we have shown that the heat rate can be

decomposed into a background contribution, independent
of the active field, and a nontrivial contribution that dictates
how the emerging order affects the energy cost.
Importantly, the latter can be deduced systematically from
the active field dynamics alone, provided that the equations
of motion for active and driving fields are thermodynami-
cally consistent, namely, that the connection to the sur-
rounding thermostat is properly taken into account [54,55].
To ensure such a connection, we have embedded active
field theories within linear irreversible thermodynamics
[69], inspired by previous works [68,70–72,79]. It amounts
to considering underlying degrees of freedom as the basis
of the nonequilibrium drive of the dynamics. Yet, at
variance with previous studies [68,70–72,79], we now
consider explicitly the fluctuations of these driving fields.
Thermodynamic consistency enforces some spurious-

drift terms in the dynamics that are proportional to noise
amplitude. As such, our framework is distinct from the
approach commonly followed to derive active field theo-
ries, based on either symmetry arguments [21,29–34] or
explicit coarse graining of microscopic dynamics [24–28],
since it enforces dynamical terms often neglected in these
theories. In practice, while being conceptually important,
the spurious-drift terms can be made to vanish by judicious
choices of spatial discretization. More generally, these
terms do not affect the mean-field behavior of the system
at vanishing noise, so that the emergent dynamics and
structure are still consistent with the existing literature of
active field theory in this regime.
Within our framework, the dynamics of the active fields

can be read out independently of that of driving fields, so
that the latter may be regarded as hidden degrees of
freedom. Moreover, the spatial decomposition of heat rate
can be evaluated in terms of active fields only. This feature
supports the fact that the emerging dynamics and patterns
of active fields alone provide direct access to spatial
variations of heat rate, without the need to measure the
fluctuations of hidden degrees of freedom. Note that

fast-relaxing variables are neglected by our hydrodynamic
description, which potentially provide additional contribu-
tions to the heat rate. Yet, provided that there is indeed a
clear timescale separation between the fluctuations of
hydrodynamic fields, either active or driving fields, and
that of other neglected variables, any additional contribu-
tion to heat rate changes only the constant background
term: Thus, it does not affect the connection between active
field patterns and spatial variations of heat rate.
To demonstrate the practical relevance of our approach,

we have evaluated the heat rate in two popular active field
theories: (i) the dynamics of a conserved scalar field which
captures active phase separation [29,30] and (ii) the
coupled dynamics of scalar and vector fields which
describes the emergence of motile deformable droplets
[73,74]. Spatial decomposition has revealed that there is a
reduced heat rate at interfaces, and we have analyzed the
leading order of heat rate at weak noise in relation with
emerging patterns. For motile droplets, we have also shown
that the heat rate undergoes a discontinuous transition when
the droplets either split or merge.
Our work provides the relevant framework to study how

heat rate relates to emerging patterns at hydrodynamic
scale. The map of heat rate indicates which parts of the
system mainly dissipate energy to sustain nonequilibrium
fluctuations. At variancewith the map deduced from explicit
EPR, which was studied in Ref. [30], the heat-rate profile
allows one to decipher where the underlying degrees of
freedom contribute to shape the emergent profile of active
fields. Note that our framework relies on the assumption of
linear deviation from equilibrium thermodynamics [69],
which does not hold for all active systems. It would be
interesting to consider chemical reactions beyond the linear
assumption, for which a thermodynamically consistent
framework has been proposed recently [99,100].
Among the active field theories encompassed by our

framework, many of them describe living systems, for
instance, dense assemblies of cells [77,98] and swarms of
bacteria [92,93]. While previous experimental works have
already evaluated the dissipation of either isolated molecu-
lar motors [101,102], cilia and flagella [45], tracers in living
cells [103,104], or in vitro cytoskeletal network [46], only
little is known regarding where energy is dissipated in
spatially extended living systems. Our work opens the door
to establishing maps of heat rate in models of living matter,
with a potential to relating high and low dissipation locations
with specific biological functions.Moreover, our predictions
for the overall heat rate could potentially be tested against
experimental measurements of the energy dissipated by
living systems, such as metabolic rates [105,106], using,
for instance, calorimetric techniques [107].
From a broad perspective, our framework lays the ground-

work to bridge the gap between the thermodynamics of
microscopic and hydrodynamic active theories. The stochas-
tic thermodynamics of particle-based active dynamics has
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already receivedmuch attention in the past few years [41,56–
60,62]. Using systematic coarse-graining procedures, some
active field theories are derived from microscopic equations,
yielding explicit correspondences between hydrodynamic
kinetic coefficients and microscopic parameters [24–27].
Based on these theories, our work offers the opportunity to
compare the predictions for the heat rate of particle-based
dynamics and that of their hydrodynamic counterparts, as a
way to analyze critically the energetics of active models at
different scales. Interestingly, a specific class of activemodels
has considered explicitly the coupling between particle
degrees of freedom and underlying chemical reactions,
following the recipe of LIT [64,108]. It would be interesting
to explore whether coarse graining this microscopic model
leads to our framework at the hydrodynamic level.
Moreover, one could examine the performances of work

extraction for continuum models [109,110] and compare
them with results obtained recently for particle-based
engines [111–113]. Furthermore, changing the heat rate
by using dynamical bias, one could study dynamical phase
transitions in hydrodynamic theories and compare them
with that reported in active particles [49–53]. One expects
the collective states of particle-based models emerging at
high and low heat rate to coincide, at least qualitatively,
with instabilities of hydrodynamic models in the same
regime. If not, one could potentially try and revise the
hydrodynamic equations to find a better agreement with
their microscopic counterparts. Following this route, our
work not only opens the door to controlling heat rate in
active field theories, it also potentially provides a way to
constrain their formulation. This work calls for deeper
investigations and encourages further contributions to the
thermodynamics of active matter.
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APPENDIX A: NONEQUILIBRIUM
GRAND-CANONICAL ENSEMBLE

Consider a simple model of a conserved field dynamics
as presented in Sec. II A and depicted in Fig. 1. This system

can be described by the dynamics of three species: active
particles (ϕ) that are present only in the active subsystem,
fuel (nf), and products of the fuel consumption by the
active particles (np). The three corresponding continuity
equations are

_ϕþ∇ · J ¼ 0;

_nf þ∇ · Jf ¼ −r;

_np þ∇ · Jp ¼ r; ðA1Þ

where Jf;p ¼ −Dff;pg · ∇μff;pg and r is the rate of fuel
consumption that is nonvanishing only within the active
subsystem. Here, the chemical potentials of the fuel and
products are defined as usual: μff;pg ¼ δF=δnff;pg. We
continue by defining the chemical coordinates n ¼
ðnp − nfÞ=2 and nt ¼ ðnp þ nfÞ=2 such that μf;p ¼
ðδF=δnt ∓ δF=δnÞ=2, and the chemical potential differ-
ence is Δμ ¼ μf − μp ¼ −δF=δn. When diffusion of fuel
and products is fast enough compared to the rate of fuel
consumption r and the dynamics of the active fieldsϕ, μff;pg
adjusts very fast comparedwith the active dynamics, so that it
can be considered to be constant throughout the entire
system. In such a case, _np ¼ − _nf ¼ r, _nt ¼ 0, and

_n ¼ r; ðA2Þ

within the active subsystem. Although the dynamics of the
chemical coordinaten and the fuel or products are essentially
the same, these fields are not equivalent. Specifically, the
free-energy dependence on either fuel, products, or the
chemical coordinates is generally different.
Finally, we assume that the timescale in which a

significant change in Δμ occurs is very long compared
to the timescales of interest. Then, the reservoirs of fuel and
products can be regarded as having constant chemical
potentials, and a constant chemical potential difference Δμ
is maintained throughout the small active subsystem (see
also Fig. 1), which is the source of activity. This assumption
is what used in the main text Eq. (3). The construction
described above essentially forms a nonequilibrium grand-
canonical ensemble. Within this ensemble, _n must be
thought of as being the rate of fuel consumption, while
the connection to the free energy of the reservoirs is
seemingly lost.
A concrete example for such an active subsystem,which is

also a prototype, is a thin slab as depicted in Fig. 6. For
instance, this description would be appropriate for the
experiment on light-activated self-propelled colloids of
Ref. [17]. In this geometry, one may write Dff;pg ¼
Dff;pg

⊥ ê⊥ê⊥ þDff;pg
k ðI − ê⊥ê⊥Þ, where ê⊥ refers to the

direction perpendicular to the thin slab. Because the slab is
thin, diffusion of particles in and out of the slab ismuch faster
than within it, such that fuel and products do not flow within
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the slab, Jf;p ≃ ðJf;p · ê⊥Þê⊥. Conservation of mass then
dictates that Jp · ê⊥ ¼ −Jf · ê⊥ (the active particles cannot
leave the slab) so that

_np ¼ − _nf ¼ −∇ê⊥ðJp · ê⊥Þ þ r: ðA3Þ

When diffusion of fuel and products in and out of the slab is
fast compared with the active dynamics, we get Eq. (A2)
within the slab. Note that, in this example, the diffusion of
fuel and products within the slab does not need to be fast
compared with the active dynamics. It is sufficient to have
fast diffusion of fuel and products perpendicular to the slab.
At times long enough that the fuel reservoir starts to

become exhausted, one must consider the change of Δμ due
to fuel and product fluxes in and out of the active subsystem,
as in Eq. (A3). On these timescales, there should not be any
steady-state heat production. This result is evident from
Eq. (13) after substituting Δμ ¼ −δF=δn, _nt ¼ 0, and
Eq. (A2), which gives _Q ¼ dhF ½n; nt�i=dt ¼ 0.

APPENDIX B: SPURIOUS-DRIFT TERMS

In this Appendix, we obtain the expression of the
spurious-drift terms fνΩ; χΩg in Eqs. (1)–(4) and (15)–
(19). To this aim, we first derive the Fokker-Planck
equations (FPEs) associated with the spatially discretized
dynamics. Then, we choose the spurious-drift terms so that
the Boltzmann distribution is the steady-state solution of
FPEs in the equilibrium regime. We focus on the one-
dimensional case for simplicity (d ¼ 1), since the gener-
alization to higher d is straightforward. To generalize the
discussion to d dimensions, one needs only to use the d-
dimensional version of the gradient matrix instead of the
one-dimensional matrix used below.

The spatial discretization amounts to considering the
variables fϕiðtÞ; piðtÞg, where the indices i denote lattice
coordinates, whose dynamics converge to that of
fϕðx; tÞ; pðx; tÞg in the limit of small lattice constant
Δx, where x ¼ iΔx. In particular, we introduce the gradient
matrix A defined by

lim
Δx→0

X
j

AijϕjðtÞ ¼ ∂xϕðx; tÞ;

lim
Δx→0

1

Δx

X
k

Aik
∂

∂ϕkðtÞ
¼ ∂x

δ

δϕðx; tÞ : ðB1Þ

A standard choice for A is given by Aij ¼
ðδi;j−1 − δi;jþ1Þ=ð2ΔxÞ, though other spatial discretizations
are possible. In what follows, we discuss the consequence
of such a choice in the form of the spurious-drift terms.

1. Conserved dynamics for scalar field

We first consider the conserved dynamics for a scalar
field in Eqs. (1)–(4) and write them in the discretized
form as

_ϕi ¼
X
j

Aij

�
λ
X
k

Ajkψk − ΔμjCj − Tνj − Λj

	
;

_ni ¼ γΔμi − Ci

X
j

Aijψ j þ Tχi þ ξi; ðB2Þ

where ψ i ¼ ðδF=δϕÞðx ¼ iΔxÞ and the coupling term
Ci ¼ Cðϕi;

P
j Aijϕj;…Þ depends on ϕ and its gradients,

in general. The noise terms fΛi; ξig are Gaussian with zero
mean and correlations given by

h½Λi;ξi�ðtÞ½Λj;ξj�⊺ð0Þi ¼ 2TLi
δijδðtÞ
Δx

; Li ¼
�
λ Ci

Ci γ

�
:

ðB3Þ

Given that the correlations between Λi and ξi depend on the
variable ϕi through the coupling term Ci, one has to specify
the temporal discretization scheme of Eq. (B2). In what
follows and in the main text, we choose the Stratonovich
convention, which allows one to use the standard rules of
differential calculus [78]. This choice is particularly con-
venient when deriving the expression of the heat rate _Q
defined in Eq. (9).
The associated FPE for the probability density

Pðfϕi; nig; tÞ can then be derived following standard
methods as [78]

FIG. 6. Schematic of the active slab system. Small orange
(green) spheres are fuel (products), and large hollow spheres are
the active particles, which are confined to the surface and
consume fuel at rate r. The products of the reaction diffuse
out of the slab to the bulk system (reservoir of both fuel and
products), while fuel molecules diffuse into the slab from the bulk
to maintain constant chemical potential.
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_P ¼
X
i;j

Aij
∂
∂ϕi

��
−λ

X
k

Ajkψk þ ΔμjCj þ Tνj

	
P

�
þ
X
i

∂
∂ni

��
−γΔμi þ Ci

X
j

Aijψ j − Tχi

	
P

�

þ T
Δx

X
i;a;b;c

�X
j

Aij
∂
∂ϕj

;
∂
∂ni

�
a
Mi;ab

�X
k

Aik
∂

∂ϕk
;
∂
∂ni

�
⊺

c
ðMi;cbPÞ; ðB4Þ

where we introduce the matrix Mi defined by MiM
⊺
i ¼ Li.

In the continuum limit of small Δx, it follows using
Eq. (B1) that Eq. (B4) converges to the standard functional
FPE for the probability density Pf½ϕðxÞ; nðxÞ�; tg [22,114].
Importantly, by taking fνi; χig as

½νi; χi�a ¼
1

Δx

X
b;c

Mi;ab

�X
k

Aik
∂

∂ϕk
;
∂
∂ni

�
c
Mi;cb; ðB5Þ

the stationary solution of Eq. (B4) is given by the Boltzmann
distribution Ps ∼ e−ΔxF=T at equilibrium, namely, when
½ψ i;Δμi� ¼ ½∂F=∂ϕi;−∂F=∂ni�, as expected [83,86]. As
a result, the expression of fνi; χi;Lig in Eqs. (B3) and (B5)
provides a systematic way to compute the spurious-drift
terms in terms of Ci. When Ci is independent of ni, as is
assumed below, Eq. (B5) vanishes if Ci depends only on ϕi,
namely, when it is a local function of ϕ independent of its
gradients. Besides, the extension of Eq. (B5) for d > 1
follows directly by substituting the d-dimensional version of
the gradient matrix A.
When d ¼ 1, the chain rule

∂Mi;ab

∂ϕj
¼ ∂Mi;ab

∂Ci

∂Ci

∂ϕj
ðB6Þ

then leads to simplify Eq. (B5) as

νi ¼
1

Δx

�
Mi;11

∂Mi;11

∂Ci
þMi;12

∂Mi;12

∂Ci

	X
j

Aij
∂Ci

∂ϕj
;

χi ¼
1

Δx

�
Mi;21

∂Mi;11

∂Ci
þMi;22

∂Mi;12

∂Ci

	X
j

Aij
∂Ci

∂ϕj
: ðB7Þ

The matrix Mi can be written as Mi ¼ P−1
i DiPi, where

Di ¼
� ffiffiffiffiffiffiffi

τi;−
p

0

0
ffiffiffiffiffiffiffi
τi;þ

p
�
; Pi ¼

� ðτi;− − γÞ=Ci 1

ðτi;þ − γÞ=Ci 1

�
;

τi;� ¼ 1

2

�
γ þ λ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4C2

i þ ðγ − λÞ2
q �

: ðB8Þ

Substituting the expression of Mi in Eq. (B7), we deduce
that νi always vanishes for any Ci in d ¼ 1, yet it can still
potentially be nonzero in higher dimensions. Besides, we
deduce the expression of χi as

χi ¼
1

Δx
2C2

i þ ðγ − λÞ½γ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γλ − C2

i

p
�

4C2
i þ ðγ − λÞ2

X
j

Aij
∂Ci

∂ϕj
: ðB9Þ

To obtain Eq. (26) from Eq. (14), one has to evaluateP
ihCiΛii following standard stochastic calculus [78],

which reads

X
i

hCiΛii ¼ T
X
i;j

Aij

�
Mi;11

∂
∂ϕj

ðMi;11CiÞ

þMi;12
∂
∂ϕj

ðMi;12CiÞ
�
; ðB10Þ

where we use again that Ci is independent of ni. From
Eqs. (B9) and (B10), it follows that the relation between the
heat rate _Q and the explicit entropy production rate S given
in Eq. (26) holds whenever

P
j Aijð∂Ci=∂ϕjÞ ¼ 0, which is

the case considered in the main text.
Let us focus on the specific coupling term CAMB ¼

∂xð∂xϕÞ2 ¼ 2ð∂xϕÞ∂2
xxϕ corresponding to Active Model

B, as considered in Sec. III A. This coupling term can be
written using different discretization schemes, such as

Cð1Þ
i ¼

X
k;l;m

AikðAklϕlÞðAkmϕmÞ;

Cð2Þ
i ¼ 2

X
k;l;m

ðAikϕkÞðAilAlmϕmÞ; ðB11Þ

both of which converge to CAMB at small Δx. A priori, one
might expect the spurious-drift terms to be independent of
the discretization scheme, yet we now show that different
discretizations yield different expressions for the spurious-
drift terms, in general. For Cð1Þ, we get

X
j

Aij
∂Cð1Þ

i

∂ϕj
¼ 2

X
j;k;l

AijAikAkjAklϕl

¼ −2
X
j;k;l

ðAijAjkÞAikAklϕl

¼ −2
X
k;l

½A2�ikAikAklϕl; ðB12Þ

where we use Aij ¼ −Aji. Taking Aij ¼ ðδi;j−1 − δi;jþ1Þ=
ð2ΔxÞ, we deduce ½A2�ikAik ¼ 0, so that Eq. (B12) is zero.
Substituting Eq. (B12) in Eq. (B7), we conclude that there
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is no spurious drift associated withCð1Þ, since both νi and χi
vanish, yet this conclusion no longer holds when consid-
ering higher-order schemes for the gradient matrix A. For
Cð2Þ, we get

X
j

Aij
∂Cð2Þ

i

∂ϕj
¼ 2

X
j;k;l

AijðAijAilAlk þAilAljAikÞϕk

¼ −2
X
j;k;l

½ðAijAjiÞðAilAlkÞ þ ðAilAljAjiÞAik�ϕk

¼ −2
X
k

ð½A2�ii½A2�ik þ ½A3�iiAikÞϕk;

ðB13Þ

where we use again Aij ¼ −Aji. Given that A is antisym-
metric, any odd (even) power of A is antisymmetric
(symmetric), so that ½A3�ii ¼ 0 and ½A2�ii ≠ 0. Then,
Eq. (B13) is always nonzero for any form of the gradient
matrix A. The examples in Eqs. (B12) and (B13) illustrate
that the choice of spatial discretization affects drastically
the form of the spurious-drift terms.
For the study of Active Model B presented in Sec. III A,

we choose to discretize CAMB using Cð1Þ. Since the
corresponding spurious-drift terms vanish, this choice
allows us to embed Active Model B in a thermodynami-
cally consistent framework without the need to change the
dynamical equations considered in Refs. [29,41].

2. Generalized field dynamics

We now consider the generalized dynamics for con-
served and nonconserved fields in Eqs. (15)–(19). When
the driving parameter is a chemical potential difference
(ΔΩ ¼ ΔμΩ), the spurious-drift terms follow from a
straightforward extension of Eq. (B5) as

½νϕ;i; χϕ;i�a ¼
1

Δx

X
b;c

MðϕÞ
i;ab

�X
k

Aik
∂

∂ϕk
;

∂
∂nϕ;i

�
c
MðϕÞ

i;cb;

½νp;i; χp;i�a ¼
1

Δx

X
b;c

MðpÞ
i;ab

� ∂
∂pi

;
∂

∂np;i
�
c
MðpÞ

i;cb; ðB14Þ

where

MðΩÞ
i ½MðΩÞ

i �⊺ ¼ LðΩÞ
i ; LðΩÞ

i ¼
�

λΩ CΩ;i

CΩ;i γΩ

�
: ðB15Þ

The expression of fνΩ; χΩ;LΩg in Eqs. (B14) and (B15)
can then be used to derive explicitly the spurious-drift terms
for given coupling terms CΩ. As discussed in Sec. B 1, the
choice for spatial discretization of the gradient terms
appearing in CΩ is crucial to determine the corresponding
spurious-drift terms: A judicious choice can potentially
make fνΩ; χΩg vanish.

The case where the driving parameter represents a
chemical current (ΔΩ ¼ _nΩ=γΩ) deserves a more careful
treatment, which we discuss now. For simplicity, we
address the dynamics of a polar field p without any
conserved scalar field ϕ, as given by

_pi ¼ λhi þ ð _ni=γÞCi þ Tνi þ Λi;

_ni ¼ γΔμi þ Cihi þ Tχi þ ξi; ðB16Þ

where hi ¼ −ðδF=δpÞðx ¼ iΔxÞ and fΛi; ξig are
Gaussian noises with zero mean and correlations

h½Λi; ξi�ðtÞ½Λj; ξj�⊺ð0Þi ¼ 2T

�
λ 0

0 γ

�
δijδðtÞ
Δx

: ðB17Þ

Note that there is no longer any correlation between Λi
and ξi in contrast with Eq. (B3). To derive the corres-
ponding FPE for Pðfpi; nig; tÞ, it is convenient to
substitute the expression of _ni in the dynamics of pi,
yielding

_pi ¼
�
λþC2

i

γ

	
hi þΔμiCi þ T

�
νi þ

Ciχi
γ

	
þ Γi: ðB18Þ

Here, the noise term Γi ¼ Λi þ Ciξi=γ is Gaussian with
zero mean and correlations given by

h½Γi; ξi�ðtÞ½Γj; ξj�⊺ð0Þi ¼ 2TKi
δijδðtÞ
Δx

; ðB19Þ

where the Onsager matrix Ki reads

Ki ¼
�
λþ C2

i =γ Ci

Ci γ

�
: ðB20Þ

Note that the dynamics can be written in a compact form,
analogous to that given in Eq. (6) when the driving
parameter is a chemical potential difference, as

½ _pi; _ni� ¼Ki½hi;Δμi�þT½νiþCiχi=γ;χi�þ ½Γi;ξi�: ðB21Þ

Though _n is taken constant in Eq. (B21), we consider the
case where both pi and ni are stochastic variables to obtain
the expression of the spurious-drift terms fνi; χig. The FPE
for Pðfpi; nig; tÞ then reads

_P¼
X
i

∂
∂pi

��
−
�
λþC2

i

γ

	
hi−ΔμiCi−T

�
νiþ

Ciχi
γ

	�
P

�

þ
X
i

∂
∂ni ½ð−γΔμi−Cihi−TχiÞP�

þ T
Δx

X
i;a;b;c

� ∂
∂pi

;
∂
∂ni

�
a
Ji;ab

� ∂
∂pi

;
∂
∂ni

�
⊺

c
ðJi;cbPÞ; ðB22Þ
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where we introduce the matrix Ji defined by JiJ
⊺
i ¼ Ki.

Choosing the spurious-drift terms

�
νi þ

Ciχi
γ

; χi

�
a
¼ 1

Δx

X
b;c

Ji;ab

� ∂
∂pi

;
∂
∂ni

�
c
Ji;cb ðB23Þ

enforces that the stationary solution of Eq. (B22) is Ps ∼
e−ΔxF=T when ½hi;Δμi� ¼ ½−∂F=∂hi;−∂F=∂ni�, as
expected in equilibrium [83,86]. Then, Eqs. (B19)–(B23)
define fνi; χig in terms of Ci through Ji when the driving
parameter represents a chemical current (Δp ¼ _n=γ). This
definition is, in general, different from that given in
Eqs. (B14) and (B15) when the driving parameter is a
chemical potential (Δp ¼ Δμp).
For d ¼ 1, the spurious-drift terms fνi; χig are propor-

tional to ∂Ci=∂pi. In particular, taking

Cð1Þ
p;i ¼ pi

X
j

Aijpj; Cð2Þ
p;i ¼

1

2

X
j

Aijp2
j ; ðB24Þ

which both converge to Cp ¼ p∂xp ¼ ð1=2Þ∂xp2 at small
Δx, as considered in Sec. III B, we get

∂Cð1Þ
p;i

∂pi
¼

X
j

Aijpj;
∂Cð2Þ

p;i

∂pi
¼ 0; ðB25Þ

where we use Aii ¼ 0. It follows that fνi; χig vanish for the

coupling termCð2Þ
p but not forCð1Þ

p . As already noticed for the
conserved dynamics of a scalar field [see Eqs. (B12) and
(B13)], different spatial discretizations yield different spu-
rious-drift terms. For the motile polar droplets studied in

Sec. III B, we take the coupling term to be discretized asCð2Þ
p ,

which leads to vanishing spurious-drift terms. Note that

X
i

hCp;iΛp;ii ¼ T
X
i

�
Ji;11

∂
∂pi

ðJi;11Cp;iÞ

þ Ji;12
∂
∂pi

ðJi;12Cp;iÞ
�

ðB26Þ

also vanishes whenever ∂Cp;i=∂pi ¼ 0; in particular, it does

so for Cð2Þ
p .

Moreover, in the case where the dynamics (B16) features
an additional conserved scalar field with a driving param-
eter proportional to chemical current, namely,Δϕ ¼ _nϕ=γϕ,
the spurious-drift terms follow straightforwardly by
extending Eq. (B23). Indeed, since the FPE for
Pðfϕ; pi; nϕ;i; np;ig; tÞ can be separated into two sectors,
associated with derivatives given by either f∂=∂pi; ∂=∂np;ig or fPj Aijð∂=∂ϕjÞ; ∂=∂nϕ;ig, we get

�
νϕ;i þ

Cϕ;iχϕ;i
γϕ

; χϕ;i

�
a

¼ 1

Δx

X
b;c

JðϕÞi;ab

�X
k

Aik
∂

∂ϕk
;
∂
∂ni

�
b
JðϕÞi;cb; ðB27Þ

where

JðϕÞi ½JðϕÞi �⊺ ¼ KðϕÞ
i ; KðϕÞ

i ¼
�
λϕ þ C2

ϕ;i=γϕ Cϕ;i

Cϕ;i γϕ

�
:

ðB28Þ

The spurious-drift terms vanish when Cϕ depends on ϕ
only locally. In particular, this result is the case for Cϕ ¼
ϕp as considered in Sec. III B.

APPENDIX C: HEAT RATE

This Appendix is devoted to deriving the heat rate _Q, as
defined in Eq. (9), for the dynamics (15)–(19). We obtain a
generic expression in terms of the driving parameter and its
conjugated chemical field. Moreover, we derive explicitly
the dependence of _Q on model parameters for active phase
separation and motile polar droplets, to leading order in
noise strength, as considered, respectively, in Secs. III A
and III B.

1. Generalized field dynamics

We first consider a generalized dynamics for a conserved
scalar field ϕ and a polar field p of the form

_ϕ ¼ −∇ · J;2
6664

J

_nϕ
_p

_np

3
7775 ¼ L

2
6664
−∇ðδF=δϕÞ

Δμϕ
−δF=δp

Δμp

3
7775þ T

2
6664
νϕ
χϕ

νp
χp

3
7775þ

2
6664
Λϕ

ξϕ

Λp

ξp

3
7775; ðC1Þ

where the noise term Ξ ¼ ½Λϕ; ξϕ;Λp; ξp� is Gaussian with
zero mean and correlations given by

hΞðr; tÞΞ⊺ðr0; t0Þi ¼ 2TLðr; tÞδðr − r0Þδðt − t0Þ ðC2Þ

and the spurious-drift terms are given for d ¼ 1 as

½νϕ;i; χϕ;i; νp;i; χp;i�a
¼ 1

Δx

X
b;c

Mi;ab

�X
k

Aik
∂

∂ϕk
;

∂
∂nϕ;i ;

∂
∂pi

;
∂

∂np;i
�
c
Mi;cb;

ðC3Þ

where M is defined by MM⊺ ¼ L. In contrast with
Eqs. (15)–(19), we now consider an arbitrary Onsager
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matrix L, with the only constraint that it should be positive
semidefinite (detL ≥ 0).
Following Refs. [86,88], the path probability P ∼ e−A

associated with Eqs. (C1)–(C3) is defined by

A ¼ 1

4T

Z
t

0

Z
V

0
BBB@

2
6664

J

_nϕ
_p

_np

3
7775þ L

2
6664
∇ðδF=δϕÞ
−Δμϕ
δF=δp

−Δμp

3
7775

1
CCCA

× L−1

0
BBB@

2
6664

J

_nϕ
_p

_np

3
7775þ L

2
6664
∇ðδF=δϕÞ
−Δμϕ
δF=δp

−Δμp

3
7775

1
CCCA

⊺

drds; ðC4Þ

where, as a consequence of the Stratonovich discretization,
the spurious-drift terms do not appear in the expression
(C4) [86]. Note that some terms which are even under time
reversal are not written explicitly in Eq. (C4), since they are
not relevant for deriving the heat rate. These terms could
potentially be relevant if one or several of the order
parameters were odd under time reversal. The time-
reversed dynamic action AR follows from Eq. (C4) by
changing the sign of ½J; _nϕ; _p; _np�. From the definition in
Eq. (9), the heat rate can be written as

_Q ¼ lim
t→∞

T
t
hAR −Ai; ðC5Þ

yielding

_Q ¼
Z
V

�
−J ·∇ δF

δϕ
− _p ·

δF
δp

þ _nϕΔμϕ þ _npΔμp
�
dr

¼ −
dhF i
dt

þ
Z
V
h _nϕΔμϕ þ _npΔμpidr; ðC6Þ

where we use _ϕ ¼ −∇ · J. In steady state, using
dhF i=dt ¼ 0, we then deduce the final expression of heat
rate given in Eq. (22).
To treat the case where the driving coefficients are odd

(ΔΩ ¼ _nΩ=γΩ), the first step is to substitute in the dynamics
of fϕ;pg the corresponding expressions for _nΩ, as is done
in Appendix B 2, for instance. Then, following the same
procedure as in Eqs. (C4)–(C6), it is straightforward to
show that Eq. (22) also holds for odd driving coefficients.

2. Active phase separation

We proceed by considering the specific dynamics of
active phase separation, as studied in Sec. III A. The
difference between TS and the nontrivial contribution to
heat rate _Q − γVΔμ2, denoted by Δ in what follows, reads

Δ ¼ 4Δμ2
Z
V
hð∂xϕÞ2ð∂2

xϕÞ2idx: ðC7Þ

Expanding the density field around the homogeneous
profile ϕ0ðxÞ ¼ ϕ̄ as ϕ ¼ ϕ̄þ ffiffiffiffi

T
p

ϕ1 þOðTÞ, we get

Δ ¼ 4ðTΔμÞ2
Z
V
hð∂xϕ1Þ2ð∂2

xϕ1Þ2idxþOðT3Þ; ðC8Þ

which, by introducing the Fourier coefficients ϕ̃1ðkÞ ¼
ð1=VÞ RV e−ikxϕ1ðxÞdx, can be written as

Δ ¼ −4VðTΔμÞ2
X

k1;k2;k3

k1k2k23ðk1 þ k2 þ k3Þ2

× hϕ̃1ðk1Þϕ̃1ðk2Þϕ̃1ðk3Þϕ̃�
1ðk1 þ k2 þ k3Þi þOðT3Þ;

ðC9Þ

where � denotes complex conjugate. Given that ϕ̃1 has
Gaussian statistics with zero mean, Wick’s theorem enfor-
ces that

hϕ̃1ðk1Þϕ̃1ðk2Þϕ̃1ðk3Þϕ̃�
1ðk1 þ k2 þ k3Þi

¼ hϕ̃1ðk1Þϕ̃1ðk2Þihϕ̃1ðk3Þϕ̃�
1ðk1 þ k2 þ k3Þi

þ hϕ̃1ðk1Þϕ̃1ðk3Þihϕ̃1ðk2Þϕ̃�
1ðk1 þ k2 þ k3Þi

þ hϕ̃1ðk2Þϕ̃1ðk3Þihϕ̃1ðk1Þϕ̃�
1ðk1 þ k2 þ k3Þi: ðC10Þ

Substituting Eq. (C10) in Eq. (C9) and using

hϕ̃1ðkÞϕ̃1ðk0Þi ¼
1

V
δk;−k0

aþ 3bϕ̄2 þ κk2
; ðC11Þ

we then deduce

Δ ¼ 4ðTΔμÞ2
V

X
k1;k2

ðk1k2Þ2ðk21 − 2k1k2Þ
ðaþ 3bϕ̄2 þ κk21Þðaþ 3bϕ̄2 þ κk22Þ

þOðT3Þ: ðC12Þ

In the regime V ≫ Δx, for which the sum
P

k can be
approximated by the integral V

R
dk=ð2πÞ, we get

Δ
4VðTΔμÞ2¼

Z
dk1dk2
ð2πÞ2

×
k41k

2
2

ðaþ3bϕ̄2þ κk21Þðaþ3bϕ̄2þ κk22Þ
þOðTÞ;

ðC13Þ

where we simplify the integrand using the k → −k
symmetry.
The range of integration for the wave number integral in

Eq. (C13) runs over ½−π=Δx; π=Δx�. In practice, for the
discretized version of Active Model B in Eq. (B2) taken

MARKOVICH, FODOR, TJHUNG, and CATES PHYS. REV. X 11, 021057 (2021)

021057-18



with the gradient matrix Aij ¼ ðδi;j−1 − δi;jþ1Þ=ð2ΔxÞ,
the odd and even lattice sites decouple when the
driving coefficient Δμ is small. In this regime, the field
dynamics effectively evolves with a lattice constant
2Δx, so that the appropriate range of integration is then
½−π=ð2ΔxÞ; π=ð2ΔxÞ�, which is the wave number integra-
tion range that we consider when reporting our analytic
prediction (C13) in Fig. 2.

3. Motile polar droplets

Finally, we compute the heat rate for the dynamics of
motile polar droplets, as discussed in Sec. III B. The
corresponding heat rate is given in Eq. (43). In the
homogeneous state [ϕ0ðxÞ ¼ cst and p0ðxÞ ¼ cst], it can
be expanded at small noise T, yielding at leading order

_Q − Vð _n2ϕ þ _n2pÞ

¼ T
Z
V
f½ð _nϕ − _npÞp0fϕp − _nϕϕ0fϕϕ�hϕ1∂xp1i

þ _nϕϕ0κhð∂2
xϕ1Þ∂xp1igdxþOðT2Þ; ðC14Þ

where we eliminate some boundary terms.
To evaluate Eq. (C14), we compute the correla-

tions between p1 and ϕ1 in the Fourier domain. The
dynamics of the Fourier coefficients ½ϕ̃1ðk; tÞ; p̃1ðk; tÞ� ¼
ð1=VÞ RV ½ϕ1ðx; tÞ; p1ðx; tÞ�e−ikxdx can be readily deduced
from Eqs. (45) and (46) as

_̃ϕ1 ¼ −½ðfϕϕ þ κk2Þk2 þ ik _nϕp0�ϕ̃1

− ðfϕpk2 þ ik _nϕϕ0Þp̃1 þ ikΛ̃ϕ;0;

_̃p1 ¼ −ðfpp þ Kk2 þ ik _npp0Þp̃1 − fϕpϕ̃1 þ Λ̃p;0: ðC15Þ

Using Itô’s lemma [78], we obtain the following relations:

∂thp̃1ϕ̃
�
1i ¼ h _̃p1ϕ̃

�
1i þ hp̃1

_̃ϕ
�
1i;

∂thjp̃1j2i ¼ h _̃p1p̃�
1i þ hp̃1

_̃p�
1i þ 2=V;

∂thjϕ̃1j2i ¼ h _̃ϕ1ϕ̃
�
1i þ hϕ̃1

_̃ϕ
�
1i þ 2k2=V: ðC16Þ

Substituting Eq. (C15) in Eq. (C16), we then get in steady
state

0 ¼ ½fpp þ ðfϕϕ þ K þ κk2Þk2 þ ikð _np − _nϕÞp0�hp̃1ϕ̃
�
1i þ fϕphjϕ̃1j2i þ ðfϕpk2 − ik _nϕϕ0Þhjp̃1j2i;

2=V ¼ 2ðfpp þ Kk2Þhjp̃1j2i þ fϕphp̃1ϕ̃
�
1 þ p̃�

1ϕ̃1i;
2k2=V ¼ 2ðfϕϕ þ κk2Þk2hjϕ̃1j2i þ fϕpk2hp̃1ϕ̃

�
1 þ p̃�

1ϕ̃1i þ ik _nϕϕ0hp̃1ϕ̃
�
1 − p̃�

1ϕ̃1i: ðC17Þ

FromEq. (C17), we obtain the solution for hp̃1ϕ̃
�
1i, and, after substituting in Eq. (C14), we get the explicit expression of _Q. For

_nϕ ¼ _np ≡ _n, it takes the following form:

_Q ¼ 2V _n2 þ TV
Z

π=Δx

−π=Δx

ð _nϕϕ0kÞ2ðfϕϕ þ κk2Þ2½fpp þ ðfϕϕ þ K þ κk2Þk2�
½ðfϕϕ þ κk2Þðfpp þ Kk2Þ − f2ϕp�½fpp þ ðfϕϕ þ K þ κk2Þk2�2 − ð _nϕϕ0fϕpÞ2

dk
2π

þ OðT2Þ:

ðC18Þ

We measure numerically the spectrum of the integrand in the right-hand side of Eq. (C14), where
ffiffiffiffi
T

p fϕ1; p1g are
replaced by fϕ − ϕ0; p − p0g, respectively: Fig. 7 shows a good agreement with our prediction in Eq. (C18).

FIG. 7. The small-temperature spectrum of heat rate _̃q, defined
by _Q − 2V _n2 ¼ T

R
_̃qðkÞdkþOðT2Þ, is measured numerically

for different values of lattice spacing Δx which controls the upper
cutoff π=Δx of the spectrum. In practice, we express _̃q in terms of
correlations of the density and polarization fields by taking the
Fourier transform of the integrand in Eq. (C14). Below the cutoff,
we observe a good agreement with our analytical predictions
shown in solid lines, as given in Eq. (C18). Simulation details are
in Appendix D, the same parameter values as in Fig. 4.
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APPENDIX D: NUMERICAL SIMULATIONS

All numerical simulations are performed at dimension
d ¼ 1 in a box of size V with periodic boundary conditions
at x ¼ 0 and x ¼ V. We discretize time and space into t ¼
mΔt and x ¼ iΔx, where m ¼ f0; 1; 2;…g, i ¼ f0; 1;…;
N − 1g, and V ¼ NΔx.
The numerical scheme for Sec. III A is the same as in

Ref. [30]. In particular, it corresponds to choosing the
discretization Cð1Þ

i with Aij ¼ ðδi;j−1 − δi;jþ1Þ=ð2ΔxÞ in
Eq. (B11), so that the spurious-drift terms vanish. The
time and spatial discretization constants are fixed to be
Δt ¼ 0.01 and Δx ¼ 1, respectively. The numerical
scheme for Sec. III B is as follows. We assume the fields
fϕm

i ; p
m
i g live on lattice with periodic boundary condition

ϕm
0 ¼ ϕm

N−1; pm
0 ¼ pm

N−1; ðD1Þ

whereas the current Jmiþ1=2 and the conserved noise Λ
m
ϕ;iþ1=2

live off lattice. This choice ensures the fields fϕm
i ; p

m
i g at

the odd and even sites are coupled even in the small activity
regime. At each time step m, the current is evaluated as

Jmiþ1=2 ¼ −
1

Δx

��
δF
δϕ

	
m

iþ1

−
�
δF
δϕ

	
m

i

�

þ _nϕ
ϕm
iþ1p

m
iþ1 þ ϕm

i p
m
i

2
þ

ffiffiffiffiffiffiffiffiffiffiffi
2T

ΔtΔx

r
Λm
ϕ;iþ1=2;

ðD2Þ

and the fields are updated according to

ϕmþ1
i ¼ ϕm

i −
Δt
Δx

½Jmiþ1=2 − Jmi−1=2� ðD3Þ

and

pmþ1
i ¼ pm

i þ Δt
��

δF
δp

	
m

i
− _np

ðpm
iþ1Þ2 − ðpm

i−1Þ2
4Δx

�

þ
ffiffiffiffiffiffiffiffiffiffiffi
2TΔt
Δx

r
Λm
p;i; ðD4Þ

where fΛm
ϕ;iþ1=2;Λ

m
p;ig are Gaussian random variables with

zero mean and unit variance, independent for each i and m.

Note that we choose discretization Cð2Þ
p;i from Eq. (B24) so

that the spurious-drift terms vanish.
The multiplying factor in the last term of Eqs. (D2) and

(D4) comes from the regularization of the delta function in
Eq. (2). The conserved noise Λm

ϕ;iþ1=2 lives off lattice,
which means that its values are specified only for half-
integer lattice sites, whereas the nonconserved noise Λm

p;i

lives on lattice. The numerical results above do not depend
strongly on Δt (we choose Δt ¼ 10−3 to 10−5); however, it

depends slightly on the spatial discretization Δx, as shown
in Fig. 7.
The average density and polarization profiles in Figs. 5(a)

and 5(b) and the heat-rate profiles in Figs. 5(c) and 5(d) are
computed in the comoving frame of the droplets, since the
droplets are moving with constant velocity toward x > 0.
First, we compute the center of mass of the droplet(s)
RðtÞ ¼ R

xϕðx; tÞdx= R ϕðx; tÞdx. The instantaneous den-
sity profile in the comoving frame is then ϕðx; tÞ →
ϕ½x − RðtÞ; t�. Figure 5(a) is the long-time average of ϕ
in the comoving frame: hϕðxÞi ¼ limt1→∞

R t1
0 ϕ½x − RðtÞ;

t�dt=t1. A similar procedure is performed for the average
polarization hpðxÞi [Fig. 5(b)] and heat-rate profile _qðxÞ
[Figs. 5(c) and 5(d)].
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[96] E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov, and
S. Ramaswamy,Mesoscopic Theory for Fluctuating Active
Nematics, New J. Phys. 15, 085032 (2013).

[97] S. Ngo, A. Peshkov, I. S. Aranson, E. Bertin, F. Ginelli,
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