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Diffusive oscillators capture the pulsating states of deformable particles
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We study a model of diffusive oscillators whose internal states are subject to a periodic drive. These models are
inspired by the dynamics of deformable particles with pulsating sizes, where repulsion leads to arrest the internal
pulsation at high density. We reveal that, despite the absence of any repulsion between the diffusive oscillators,
our model still captures the emergence of dynamical arrest. We demonstrate that arrest here stems from the
discrete nature of internal states, which enforces an effective energy landscape analogous to that of deformable
particles. Moreover, we show that the competition between arrest and synchronization promotes spiral waves
reminiscent of the pulsating states of deformable particles. Using analytical coarse graining, we derive and
compare the collective dynamics of diffusive oscillators with that of deformable particles. This comparison leads
to rationalizing the emergence of spirals in terms of a rotational invariance at the coarse-grained level, and to
elucidating the role of hydrodynamic fluctuations.
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Introduction. Active matter encompasses systems where a
constant energy injection at the particle level leads to collec-
tive dynamics far from equilibrium, as is the case for many
chemical, biological, and robotic systems [1–4]. In the last
decades, most studies of active matter have focused on the
role of self-propulsion, i.e., the ability of each particle to
independently undergo directed motion. This paradigm has
led to the theoretical understanding of several kinds of col-
lective dynamics, which have no counterpart in equilibrium
systems [5,6].

The energy injection in complex units need not result only
in a self-propulsion mechanism. An important example is
the case of deformable particles [7]. Indeed, complex ag-
gregates such as macromolecules or living cells can change
their shape due to internal activity [8], which leads to
the spontaneous propagation of contraction waves in dense
tissues. Such a wave propagation plays a crucial role in mor-
phogenesis [9–14], uterine contraction [15,16], and cardiac
arrhytmogenesis [17,18].

Vertex models are popular to capture the behavior of dense
active systems such as biological tissues [19]. They typi-
cally consider self-propulsion as the only active component
and investigate how it affects the rigidity transition [20,21].
Yet, when dense tissues behave like solids, it is questionable
whether self-propulsion should be the key ingredient. Other
models have considered dense assemblies of deformable par-
ticles [22–30], where energy injection occurs through the
sustained oscillation of individual sizes. With a Kuramoto-like
synchronization [31,32] of particle sizes, contraction waves
spontaneously emerge [26,27,33], which are reminiscent of
those reported in biological systems [13,17].

Contraction waves in deformable active particles stem
from the competition between synchronization and steric
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repulsion [27,33]. The former favors a global cycling of parti-
cle sizes. The latter favors some specific deformations, which
is analogous to enforcing an external potential through which
particle sizes are driven [Fig. 1(a)]. At high density, local min-
ima are deep enough to trap the particle size and thus promote
an arrested state. Here, arrest refers to the hampering of size
cycling, whereas it corresponds to the hampering of particle
displacement within the rigidity transition of Ref. [20].

Interestingly, there are alternative mechanisms for arrest
and synchronization beyond steric repulsion and Kuramoto-
like interactions. This is a motivation for exploring whether
these alternatives lead to a phenomenology similar to that
of deformable active particles. Indeed, one may wonder
whether the arrest-synchronization competition is actually a

FIG. 1. (a) The collective dynamics of deformable particles maps
into a continuous oscillator ψ evolving in a potential U and subject
to a drive f (Ref. [34], Sec. S1.D). (b) The internal dynamics of
our discrete oscillator follows some transitions biased by the drive f
without any potential. (c) Our oscillators freely diffuse at a rate D0

without any volume exclusion.
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FIG. 2. The amplitude r and the phase ψ of synchronization
[Eq. (5)] reveal the coexistence of ordered domains in (a)–(b)
microscopic dynamics [Eq. (1)], and (c)–(d) hydrodynamics
[Eq. (8)]. Rotating defects appear at the meeting point of domain
interfaces, forming spiral waves with a threefold symmetry.
(a) (L, f , ε, D0, ρ0 ) = (512, 1.25, 2.5, 103, 10), and (b) (L, f , ε,
D, ρ0) = (512, 0.5, 2.5, 100, 10).

generic scenario for pattern formation. If so, it encourages
one to search for any hydrodynamic invariance and/or bro-
ken symmetry, which might stand out as a hallmark of this
competition.

In this Letter, we study a diffusive oscillator model (DOM)
(Fig. 1) featuring spiral waves rotating around defects (Fig. 2).
We reveal that the discreteness of internal states is key to
arresting the dynamics, which, in combination with syn-
chronization and drive, generically yields wave propagation.
Internal states can here be regarded as representing the local
mimina of an external potential [Fig. 1(a)], by analogy with
the case of deformable particles [27,33]. Through analytical
coarse graining, we map our DOM into a specific form of
the complex Ginzburg-Landau equation (CGLE) [35], which
breaks the continuous rotational invariance, while maintain-
ing a discrete rotational invariance. We argue that such an
invariance not only signals the emergence of arrest, but also
constrains the features of the waves at the hydrodynamic and
microscopic levels. Moreover, we reveal that hydrodynamic
noise is essential to forming patterns, whereas density fluctu-
ations are irrelevant.

Overall, our results demonstrate that the arrest-
synchronization competition, present in our DOM and
in deformable particles [27,33], is a generic route for
forming patterns, which are distinct from those of standard
reaction-diffusion systems (RDS) [36–38].

Diffusive oscillator model. We consider N oscillators in
V = Ld sites of a hypercubic d-dimensional lattice, with
global number density ρ0 = N/V , without any excluded
volume. Each site contains an arbitrarily large number of
oscillators. Each oscillator has an internal state, labeled by
a discrete index a ∈ {1, . . . , q}, as a proxy to mimic the in-
ternal phase of deformable particles [22–27,33]. The crucial
difference is that such states now feature a discrete symmetry.
In what follows, we focus on the case q = 3, which is the
minimum number of states to accommodate a current, and
d = 2. The system configuration {nj,a} is then given by the
number of oscillators for each state a and site j.

At every time step dt/N , an oscillator with state a can
either jump to a neighboring site with probability D0 dt , or
switch to state b with probability Wba dt [Figs. 1(b), 1(c)]:

Wba = exp

[
− fba + ε

ρj
(nj,b − nj,a)

]
. (1)

The first term in the exponent of Eq. (1) is defined by
fab = ± f when a − b = ±1 mod 3, and fab = 0 otherwise.
This drive mimics the pulsation of deformable particles
[22–27,33]. Following previous examples of driven and ac-
tive lattice dynamics [39–46], the second term accounts for
a synchronizing Potts-like [47] interaction with strength ε,
where ρj = ∑

a nj,a is the local density at site j. This term
favors transition towards the state with the highest number of
oscillators locally.

While interactions between oscillators are fully connected
onsite, different sites exchange information only via diffu-
sion. At small D0, many transitions of internal states occur
in between two rare jumps of sites. At large D0, jumps are so
frequent that now all oscillators are effectively interacting in
between two state transitions. In both cases, patterns cannot
emerge, and the system can be described solely in terms of
the onsite dynamics [48,49].

Breakdown of rotational invariance: Analogy with de-
formable particles. In the absence of diffusion (D0 = 0), the
evolution of the on-site occupation numbers na can be studied
in terms of the collective complex variable

A(t ) = 1

ρ0

3∑
a=1

e
2π i

3 ana(t ) ≡ r(t ) eiψ (t ). (2)

Coarse graining the microscopic dynamics, and expanding to
the lowest orders in A, we get ([34], Secs. S1.A–B)

Ȧ = c1A + c2A∗2 + c3|A|2A ≡ L(A), (3)

where ∗ refers to complex conjugation, and (c1, c2, c3)
are complex coefficients fixed by ( f , ε) ([34], Sec. S1.B).
In the regime of large ρ0, fluctuations become irrelevant.
The A∗2 term in Eq. (3) breaks the continuous symmetry
A → A eiφ , in contrast with the standard Stuart-Landau os-
cillator [50]. Yet, this term preserves the discrete symmetry
A → A e

2π i
3 k (k integer). To the third order in A, Eq. (3) ac-

tually contains all the terms compatible with this rotational
symmetry.

From the dynamics in Eq. (3), it follows that there are
three stable phases [48,49] (Fig. 3): (i) a disordered phase
at small ε, where oscillators are uniformly distributed in the
three states, with symmetric fixed point na = ρ0/3, and |A|
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FIG. 3. Stream plots of the collective variable A [Eq. (3)] for
(a) disorder, (b) cycles, and (c) arrest, with stable fixed points
(green circles), unstable fixed points (red circles), and saddles (yel-
low squares). (d) Effective landscape Ueff of the collective phase ψ

[Eq. (4)] with f = 0.1. (e) Stochastic trajectories of ψ measured in
the onsite dynamics [Eq. (1)]. As ε increases, phase oscillations slow
down, and eventually reach arrest. (N, f ) = (103, 2) and ε as in (d).
The natural pulsation reads ω = √

3 sinh f ([34], Sec. S1.B).

vanishes at large ρ0; (ii) a cycling phase at intermediate ε,
where oscillators collectively undergo periodic transitions be-
tween states; (iii) an arrested phase at large ε, with three fixed
points invariant under the cyclic permutations A → A e

2π i
3 k .

The breakdown of the continuous symmetry A → A eiφ

ensures the existence of arrest, while the discrete symmetry
A → A e

2π i
3 k enforces that the arrested phase is actually degen-

erate. Note that, in the microscopic model [Eq. (1)], transitions
between states can be regarded as unimolecular reactions, in
contrast with some models of multimolecular RDS [51,52],
and the total number of oscillators is conserved. These fea-
tures lead to stabilizing disorder at small ε, and ensure that
arrest at large ε is not an absorbing phase.

In the arrested phase, the discrete nature of the internal
states enforces that the collective phase ψ is subject to the
effective landscape Ueff ([34], Sec. S1.C):

ψ̇ = − dUeff/dψ. (4)

Remarkably, Ueff features a series of local periodic min-
ima whose depth increases with ε [Fig. 3(d)], which can be
rationalized in simple terms. At large ε, while continuous
oscillators [31] synchronously cycle without any cost, the col-
lective cycling of our discrete oscillators [Eq. (1)] entails some
periodic desynchronizations: the minima in Ueff describe the
cost of such desynchronizations. As ε increases, transitions
between minima are less favored, so that our oscillators spend
more time in a given state before cycling to the next one.
Above a critical ε, this effect completely counteracts the drive,
breaking down the periodicity of oscillations, and eventually
stabilizing arrest [Fig. 3(e)].

Interestingly, a similar phase trapping has been reported
in deformable particles [26,27,33]. Here, repulsion between
particles is equivalent to an external potential constraining the

deformation statistics [Fig. 1(a)]. At the collective level, such
a constraint can be recapitulated in terms of a landscape with
periodic minima ([34], Sec. S1.D), qualitatively analogous to
Ueff [Fig. 3(d)]. In that respect, our DOM captures the same
phenomenology, with identical collective states (disorder, ar-
rest, cycles) as that of pulsating deformable particles.

In short, arrest emerges in our DOM solely due to the
discreteness of internal states. As a result, our DOM entails
a competition between arrest and synchronization despite the
absence of any repulsion, in contrast with deformable particles
[26,27,33]. This competition opens the door to the emergence
of dynamical patterns in spatially extended systems.

Spiral waves rotate around defects. In the presence of dif-
fusion (D0 > 0), the displacement of oscillators follows a free
dynamics, independently of any interaction, so that the density
profile is always homogeneous. Yet, the spatial distribution of
the oscillator states may not remain homogeneous. Indeed,
even when oscillators are synchronized on site, they might
not be synchronized between sites, so that the system can
potentially accommodate spatial instabilities.

To study the emergence of dynamical patterns, we intro-
duce the local complex variable

Aj(t ) = 1

ρj(t )

3∑
a=1

e
2π i

3 anj,a(t ) ≡ rj(t ) eiψj(t ). (5)

When all oscillators are cycling in synchrony, the amplitude
rj ≈ 1 and the phase ψj are homogeneous. The period of ψj
increases with ε, and eventually diverges. Before diverging,
it undergoes large temporal fluctuations, which may desyn-
chronize nearby sites, thus promoting spatial fluctuations of
ψj. At large D0, spatial fluctuations are suppressed by the
rapid displacement of oscillators in the system. Instead, at
moderate D0, such fluctuations can potentially build up into
a large-scale instability.

Instabilities can lead to the spatial coexistence of three
cycling domains where rj ≡ rj,c ≈ 1. Interfaces between do-
mains have a finite width where rj,c > rj > 0. The meeting
points of interfaces are given by defects where rj ≈ 0. Since
all domains cycle at the same frequency, defects effectively
rotate, thus forming spiral waves with a threefold symmetry
[Figs. 2(a)–2(b)]. Defects connected by the same interface
rotate in opposite directions, and can annihilate by pairs when
colliding. Higher D0 increases the domain sizes and interface
widths, thus reducing the number of defects. Higher ε reduces
the interface widths and increases rj,c [Fig. 4(a)].

Remarkably, we do not observe any states with turbulent
waves, in contrast with the case of continuously deformable
particles [27]. Such a turbulence stems in Ref. [27] from ex-
citations of the homogeneous arrested phase, which promote
some localized, aperiodic cyclings. The discrete symmetry of
our DOM, which entails three arrested states, prevents such
events by trapping the phase before it completes one cycle.
Therefore, waves in our DOM spontaneously organize into
steady spirals with threefold symmetry. Note that the merging
of defects can actually also stabilize planar waves. Besides,
when initially ordered, the system can also accommodate cir-
cular waves without any defect ([34], Sec. S2.A).

Phase boundaries and transitions. In addition to the phase
with waves, we also observe the emergence of three homoge-
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FIG. 4. (a) Snapshots of the local phase ψ j [Eq. (5), color code
in Fig. 2]. (b) Trajectories of the synchronization parameter R(t )
[Eq. (6)]. (c) The averaged parameter 〈R̄〉 and (d) its standard devi-
ation σR [Eq. (7)] lead to guidelines delineating boundaries between
four phases. The solid and dashed lines correspond respectively to
〈R̄〉 = 0.2 and σR = 0.045. Symbols refer to the parameter values
taken for (a)–(b) and (e)–(d). (e), (f) Distribution of R for various
phases (1024 realizations). The arrested-wave and cycling-wave tran-
sitions both display metastability. (L, ρ0 ) = (128, 10), and f = ε/2.

neous phases (disorder, cycles, arrest) analogous to the on-site
case. To quantitatively distinguish these phases, we introduce
the synchronization parameter

R(t ) = 1

N

∣∣∣∣∣∣
∑
j,a

e
2π i

3 a nj,a(t )

∣∣∣∣∣∣. (6)

The trajectories of R(t ) allow us to identify four scenarios
[Figs. 4(a), 4(b)]: (i) a disordered phase at small ε [R(t ) ≈ 0,
yellow line]; (ii) a cycling phase at intermediate ε and large D0

[oscillating R(t ), green line]; (iii) an arrested phase at large ε

and large D0 [R(t ) � 1, blue line]; (iv) spiral waves at large ε

and intermediate D0 [R(t ) strongly fluctuates, pink line].
To delineate phase boundaries, we consider the time-

averaged R̄ and the variance σ 2
R of R(t ) [Eq. (6)]:

R̄ =
∫ t0+t

t0

R(u) du

t
, σ 2

R =
∫ t0+t

t0

〈[R(u) − R̄]2〉du

t
, (7)

where 〈·〉 is an average over realizations. 〈R̄〉 is clearly
smaller in the disordered and wave phases (without global

synchronization) than in the cycling and arrested phases (with
global synchronization) [Fig. 4(c)]. The variance σR is higher
in the cycling phase than in all others [Fig. 4(d)]. Indeed, R(t )
strongly oscillates in this phase [Fig. 4(b)] due to periodic
desynchronization. Overall, 〈R̄〉 and σR yield the phase bound-
aries in Figs. 4(c)–4(d).

We examine how the distribution P(R) varies across transi-
tions. Deep in the wave and arrested phases (pink and dark
blue lines), P(R) has a single peak, respectively at small
and large R. Deep in the cycling phase [green line], P(R)
is nonzero for a finite domain of R and peaks at its bound-
aries, due to the oscillations of R(t ). Going from waves to
arrest, P(R) becomes bimodal, thus signaling metastability
[Fig. 4(e)]. Similarly, going from waves to cycling, P(R) is
now nonzero in two separate domains, due to the coexistence
between the two dynamical states [Fig. 4(f)]. In short, both the
arrest-wave and cycling-wave transitions feature a metastable
regime.

Role of hydrodynamic fluctuations. Although spiral waves
have already been reported in many RDS, one may wonder
how our patterns [Figs. 2(a)–2(b)] actually differ from stan-
dard instabilities present, for instance, in the CGLE [35]. To
address this question, we coarse grain our DOM in terms of
Aj(t ) → A(x, t ) and ρj(t ) → ρ(x, t ) in the continuum limit,
and expand to the lowest orders in A ([34], Sec. S1.B):

∂tA = D∇2A + L(A) + 
, (8)

where L is defined in Eq. (3), and D ∝ D0 is the macro-
scopic diffusion coefficient. Neglecting the fluctuations of the
coarse-grained density ρ(x, t ), we deduce that it obeys the
simple diffusion equation (∂tρ = D∇2ρ) independently of A,
and relaxes to the homogeneous profile ρ = ρ0. Thus, we
approximate 
 as an additive zero-mean Gaussian white noise
with correlations proportional to 1/ρ0 ([34], Sec. S1.B).

The degeneracy of the arrested state directly affects the
shape of the hydrodynamic patterns. Indeed, Eq. (8) entails
an instability promoting the spatial coexistence of cycling
domains. Rotating defects with threefold symmetry sponta-
neously form where interfaces meet [Figs. 2(c)–2(d)], yielding
the same spiral waves as in our DOM [Figs. 2(a)–2(b)]. Re-
markably, in the absence of noise (
 = 0), the homogeneous
states are always stable ([34], Sec. S1.B). In other words,
while density fluctuations can be safely neglected, the fluc-
tuations in the hydrodynamics of A are essential to capture
patterns, as in Ref. [27].

In short, our coarse-graining shows that the hydrodynamics
of our DOM is distinct from the standard CGLE [35], so
that our DOM clearly differs from standard RDS. In practice,
adding to the standard CGLE the lowest-order nonlinearities,
compatible with the discrete symmetry, suffices to reproduce
the specific shape of spirals observed in our DOM.

Discussion. Our DOM with discrete symmetry entails spi-
ral waves stemming from the competition between arrest
and synchronization (Fig. 2). The key idea is that discrete
states enforce an effective landscape [Fig. 3(d)] equivalent to
the case of deformable particles with repulsive interactions
([34], Sec. S1.D) [27,33]. Discreteness of states here suffices
to promote arrest, thus providing a mechanism distinct from
that at play in Refs. [27,33]. Therefore, our results show
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that the arrest-synchronization scenario for pattern formation
extends to a broad class of models with discrete symmetry.
Waves are shaped by the discrete rotational invariance at the
hydrodynamic level, which distinguishes them from the pat-
terns of other RDS [36–38]. Remarkably, pattern formation
occurs in presence of a single, real-valued diffusion coefficient
D, in contrast with standard pattern formation in CGLE [35].
The stability analysis clarifies that fluctuations of the complex
field are crucial to yield patterns, whereas density fluctuations
are irrelevant.

Our work paves the way to examining the interplay be-
tween discrete symmetry and pattern formation for arbitrary
q. Indeed, we expect that the three homogeneous phases
(disorder, cycles, arrest) are robust beyond q = 3. To study
patterns, one can use a top-down approach postulating the
hydrodynamics by identifying the terms which obey the
discrete symmetry A → Ae

2π i
q k . As in our coarse graining

([34], Sec. S1), one can also derive the hydrodynamic coef-
ficients in terms of the microscopic parameters. It is tempting
to speculate that, depending on the parity of q, such a hy-
drodynamic study could lead to identifying generic properties
of defect dynamics [53,54]. The interplay between arrest and
synchronization also plays a crucial role in other active mod-
els with phase trapping [46,55–58]; exploring the connections
between these models represents a theoretical challenge for a
unified picture of pattern formation in active matter.

The discrete symmetry of our DOM seems to preclude a
defect turbulence, at variance with the standard CGLE [35]
and its recent generalization [27]. To capture such a tur-
bulence, one could introduce energy levels, which maintain
the discrete nature of our DOM while breaking its sym-
metry. The arrested phase would no longer be degenerate,
thus opening the door to local excitations nucleating defects
from a homogeneous phase, as reported in Refs. [27,33]. In
this context, it would be interesting to explore how density
fluctuations affect the defect nucleation at the hydrody-
namic and microscopic levels [59]. Finally, our DOM can
be straightforwardly adapted to account for thermodynamic
consistency [60], allowing one to study the energetics of the
corresponding patterns [61–63].
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