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Abstract — In equilibrium, the collective behaviour of particles interacting via steep, short-ranged
potentials is well captured by the virial expansion of the free energy at low density. Here, we extend
this approach beyond equilibrium to the case of active matter with self-propelled particles. Given
that active systems do not admit any free-energy description in general, our aim is to build the
dynamics of the coarse-grained density from first principles without any equilibrium assumption.
Starting from microscopic equations of motion, we obtain the hierarchy of density correlations,
which we close with an ansatz for the two-point density valid in the dilute regime at small activity.
This closure yields the nonlinear dynamics of the one-point density, with hydrodynamic coefficients
depending explicitly on microscopic interactions, by analogy with the equilibrium virial expan-
sion. This dynamics admits a spinodal instability for purely repulsive interactions, a signature
of motility-induced phase separation. Therefore, although our approach should be restricted to
dilute, weakly active systems a priori, it actually captures the features of a broader class of active
matter.
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Active matter is a wide category of systems out of equilib-
rium, where a net flow of energy takes place at the local,
individual level [1-3]. Examples are swimming bacteria [4]
and active emulsions [5], amongst others. The realm of
motile active matter includes interacting, many-particle
systems, where particles move persistently. Different the-
oretical approaches have been proposed to describe such
systems. They include i) particle-based models, such as
run-and-tumble particles (RTPs) [6], active Brownian par-
ticles (ABPs) [7], and active Ornstein-Uhlenbeck particles
(AOUPs) [8,9], ii) microscopic field theories [10,11], and
iii) coarse-grained field theories [12-14].

Self-propelled particles tend to slow down at high den-
sities, due to either biochemical reasons or steric repul-
sions. In contrast with passively diffusing particles, this
slowdown in turn increases the local density, creating a
positive feedback loop that can result in a phase separation

(@) Contribution to the Focus Issue Statistical Physics of Self-
Propelled Colloids edited by Hartmut Léwen, Sabine Klapp and
Holger Stark.

(B)E-mail: yulie@ist.ac.at (corresponding author)

between a dense and a dilute phase, known as motility-
induced phase separation (MIPS) [15]. To predict an-
alytically the emergence of MIPS, previous works have
relied on a local mean-field approximation to replace mi-
croscopic interaction with density-dependent motility [16],
and also on an adiabatic elimination of orientational de-
gree of freedom [15]. Other studies have developed some
aspects of a liquid-state theory for active matter with pair-
wise interactions. This is done, for instance, by expressing
thermodynamic observables, such as pressure [17-19] and
dissipation [20,21], in terms of correlations between hydro-
dynamic fields, typically density and polarization. Also,
exact results for density correlations have been obtained
at infinite dimensions [22,23].

The success of equilibrium thermodynamics largely
stems from the ability to detect phase transitions by an-
alyzing the free energy. In the dilute regime, the virial
expansion provides an approximate expression of the free
energy that averages the effect of steep, short-ranged
pairwise interactions [24]. For passive Brownian particles
(PBPs) interacting with an isotropic pairwise potential
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> i j<i Y(|xi —x;[) at temperature T', the free energy per
unit volume is given in terms of the uniform density p as

fuirial(p)/T = plogp+ B(T)p* + O(p*),

%/dr (1 — e_‘I'(7')/T>.

Here B is commonly referred to as the second virial co-
efficient. The major success of the virial expansion lies
in predicting the onset of liquid-gas phase separation in
particle systems with a combination of strongly repul-
sive short-ranged forces and weakly attractive long-range
forces, such as the Lennard-Jones potential. As temper-
ature increases, the free energy, as a function of density
p, goes from convex (B > 0) to concave (B < 0): It
yields a phase transition from homogeneous to nonhomo-
geneous density profiles, with a separation between dilute
and dense phases. Importantly, the virial expansion holds
for a generic microscopic potential (excluding those of such
long range that the excess free energy is not analytic in
density).

In classical thermodynamics, the virial expansion is of-
ten derived from the equilibrium partition function [24].
Interestingly, it is also possible to arrive at approximate
expressions of free energy by truncating the hierarchy
of density correlations, known as the Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy [25]. For
instance, using an ansatz for the two-particle density, in-
formed by the steady-state solution of the two-body prob-
lem [26], the dynamics of the one-body density follows a
gradient flow with respect to fyirial, as shown in the Sup-
plementary Material Supplementarymaterial.pdf (SM).
This type of derivation can potentially be extended to a
large class of nonequilibrum systems, where the dynam-
ics does not derive from any free energy a priori. Such
an extension requires proposing an ansatz for the two-
particle density, which should be appropriate to the spe-
cific nonequilibrium system at hand.

Interestingly, the two-body probability distribution can
be approached perturbatively for AOUPs, where the per-
sistence time is the small parameter in natural units [8,9].
To first order, this solution already predicts that repul-
sive interaction yields effective attraction. This suggests
that the onset of MIPS can likewise already be captured
by approximating the dynamics of density at this order.
Therefore, inspired by the equilibrium virial expansion, it
is tempting to explore whether the density dynamics al-
ready contains any spinodal instability for dilute active
systems at weak persistence. Note that, although pre-
vious works refer to “active virial” as an expansion of
pressure [27,28], here we are instead interested in deriving
dynamical equations of motion for the density. Indeed, at
variance with equilibrium, phase transitions in active sys-
tems are usually not thermodynamically controlled by any
equation of state, but they can still be directly detected
as instability in the dynamics. Once the density equa-
tions are derived for the density, either by hydrodynamic

(1)
B =

closures [29] or from symmetry arguments [15], the onsets
of instability are typically found by linear perturbations
around the uniform state, as illustrated in several recent
works [29-32].

In this letter, we start with the particle-based descrip-
tion of AOUPs, and consider their steady-state probability
distribution. Our roadmap is essentially a “small density-
small persistence” bottom-up derivation of the density dy-
namics. To this end, we first introduce the corresponding
hierarchy of density correlations. Inspired by equilibrium
thermodynamics [25,26], we then close the hierarchy to
arrive at a nonlinear dynamics for the one-point density.
It allows us to identify the MIPS spinodal instability for
any soft microscopic repulsive interactions. An advantage
of our approach is that it does not impose an equilibrium
mapping a priori (see [8,9] for a discussion of closures to
the AOUP equations that do so), instead retaining the
nonequilibrium structure of the microscopic theory. A
disadvantage is that extensions to higher order in den-
sity would involved increasingly complicated calculations
of higher virial coefficients, which we do not attempt
here.

Interacting AOUPs: joint distribution function.
— We consider a system of N AOUPs at positions x; inter-
acting with pairwise potential U. The particles are subject
to stochastic self-propulsion velocities v; with persistence
time 7 and diffusivity D [8,9],

N
’Ui*am%U, U:ZZ\I](TZ])a

i=1 j<i

i =

(2)
—v; + V2DA,,

T’l.)i =
where 7;; = |x; — x;|, and we have set the mobility to
unity. Here A; is a Gaussian white noise, with correlation
((Ad)a(t)(A;)s(0)) = 0;;0430(t), where Latin and Greek
letters respectively denote particle index and spatial co-
ordinates. It follows that v; is a colored Gaussian noise,
with correlation ((v;)a (t)(v;)5(0)) = 6;;6as(D/T)e” /.

In the limit of vanishing persistence (7 — 0), the corre-
lation of v; becomes white, so that the system reduces to
a set of overdamped PBPs. Note that, at finite 7, if the
potential term —0,,U was in the r.h.s. of the v;-equation
(instead of the @;-equation), the system would represent
underdamped PBPs in equilibrium. For this reason, over-
damped AOUPs and underdamped PBPs coincide in the
noninteracting limit.

Following standard procedures [33], already widely
used in active matter (see, e.g., [34,35]), the Fokker-
Planck equation of the joint probability distribution
pN (L1, v1,®1,09,...,ZN, VN, ) associated with eq. (2) is

2

atpN = [‘Cf,ipN + aa:7, : (pN aqu)]v
=1

ﬁa?,i + (%31,1. o ami) " Vi,

-
Il

(3)
Li; =
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where Ly ; is the noninteracting Fokker-Planck operator
governing the free-particle motion of the i-th particle.
Although it cannot be solved exactly, its steady state can
be computed to lowest orders in the persistence time 7 in
a similar manner to [8,9]. Such a perturbative calculation
can be performed in arbitrary dimension, though we now
restrict ourselves to 1D for simplicity, as a proof of prin-
ciple. After scaling units as v — v\/7/D , * — x/v/TD,
t — t/7, and ¥ — U/D, we find the many-body steady
state probability (see SM for details),

2 'u% N
DN oce*valz 1+\/sziain
=1
N2 3
7 2 2 2 2
+ T; <3 ((0,,U)? = 2.U) — (0,,U)* + 58in)
+o(1)|. (4)

Note that the steady state probability here is given in the
(z,v)-space, whereas [8] gives the corresponding probabil-
ity in the (z, Z)-space.

Nonequilibrium density correlations: hierarchy
of equations. — Although the joint distribution function
pn in eq. (4) contains all information about the steady
state density, it is generally difficult to predict the emer-
gence of phase transitions from the perspective of the full
phase space. Instead, our aim is to obtain a reduced de-
scription of the systel in terms of density correlations. The
n-particle density p, is found by marginalising the joint
distribution function py as

pn(mlvvlv ceoy Ty, vnat) =
N
PN,n/pN(wl,’Ul,...,:I:N,’UN,t) H dz;dv;, (5)
j=n+1

where Py, = N!/(N —n)! is the permutation coefficient.
Thereafter, for simplicity, we use the shorthand notation
Pn = Pn(X1,v1, ..., &, Uy, t) for arbitrary n, where the
dependence on positions, self-propulsion velocities, and
time will be omitted. Integrating eq. (3) over the posi-
tions and velocities of all particles but the first n yields
a hierarchy of equations, each depending on the (n + 1)-
particle density p,1, analogous to the BBGKY hierarchy
of PBPs [25]. The first such equation (n = 1) is as follows:

Oep1 = Leapr + Fipa),

(6)
Fi[p2] = O, '/pg Oz, ¥ (r12) deadvs.

The first term L¢ 1p1 corresponds to the free single-particle
dynamics, whereas the second term Fj[ps] represents the
effects of pairwise interaction between one particle and all
the others. Similarly, the second equation of the hierarchy

is

Op2 = (Ls1 + Ls 2+ Ling)p2 + Faps],
Ling = Z 8&_ : [5@‘1/(7“12)],
o (7)
Fylp3] = Z Oz, ~/p3 Oz, Y (1;3) daesdvs.
i=1,2

Here Lyt governs the pairwise interactions between any
two particles, and Fy[ps] represents the interactions be-
tween either of the first two particles and all the other
particles. As we will show now, this is a higher-order term
in the average number density p = N/V compared to the
rest, and hence can be neglected in the dilute limit.

To determine the scaling of p,, with respect to p, one
can start with their normalisation properties [24]

/Pn ﬁdﬂ?idvi = Py,

i=1

(8)

from which follows p,, ~ p” for small n. Physically, this
is indeed expected as p1(x1,v1) is the probability density
of finding n particles at a given set of coordinates. With
this scaling in mind, we estimate the scaling of each term
in eq. (7) as

(at - ﬁf,1 - Ef,2 — Ling ) P2 =
~~ I~~~

~1/Ting  ~p2

Z aw1 / p3 8miq/(ri3) dxs dws,

1=1,2
’ ~(ro)?

(9)

~p3 1/ Ting
where 7, is the typical timescale of interaction, rg is the
lengthscale of the potential, and d denotes the spatial di-
mension. One can see that the r.h.s. of eq. (9) is small if
rdp < 1. Since rd is effectively the volume of a particle,
this condition is satisfied if the volume fraction of parti-
cles in the system is low. Therefore, as expected from the
analogy with the BBKY hierarchy [25], the interaction of
two particles with respect to others in the bath can be
neglected at small volume fraction.

Closure of hierarchy: insight from quasistatic ap-
proximation. — We now propose a closure of the hierar-
chy of equation for density correlations. At small volume
fraction, neglecting the r.h.s. in eq. (9) yields

Op2 = (Lsa1 + Ls2 + Ling) 2. (10)
The dynamics in eq. (10) is equivalent to the Fokker-
Planck equation of two AOUPs interacting through the
pairwise potential ¥(riz). Recall from eq. (4) the N-
particle stationary probability, calculated order by order
in the persistence time 7. The two-particle probability is
hence

w2 402
Pass(r12, V1, 02) oc e~ Y2 =TT g ) — ), (11)
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where

g(r,w) = 1+ V7wl + (tw?/2)((V)? — 9"

+7(30" — 2(0")2) + O(+3/?), (12)

and ¥/ = d¥/dr (see SM). In the quasistatic limit, where
the interaction timescale is much shorter than the persis-
tence (Tint <€ 7), we assume that every pair of particles
reaches steady state. Inspired by previous works [26,36],
this assumption motivates the following ansatz to close the
hierarchy of density correlations:

p2(21,v1,22,v2,t) = p1(x1,v1,t) p1(w2,va,1)

xe*‘I’(”z)g(rlg,vl —v9). (13)

There is evidence that the above ansatz works well for
strong short-ranged interactions in the equilibrium case
(see SM). We assume it would also work in the nonequi-
librium case. Indeed, when the interparticle distance is
larger than the interaction range (r12 > ), the two-point
function po reduces to the product of one-point functions
p1, as expected from a mean-field approach for nonin-
teracting systems. The second line of eq. (13) accounts
for corrections due to interactions. For repulsive poten-
tial, the factor e~ ¥ captures the reduction of the two-
point density caused by the interaction, as expected from
equilibrium, whereas g(r12,v1 — v2) encapsulates nonequi-
librium effects. We highlight that the ansatz naturally
encodes nontrivial velocity-velocity correlations that are
absent in equilibrium, similar to the findings of [37]. The
full consequences of such correlations are beyond the scope
of this letter. Note, however, that related velocity correla-
tions are known in several other nonequilibrium contexts
including but not limited to granular matter [38,39].
Substituting the ansatz from eq. (13) into eq. (6), we ar-
rive at the following dynamics for the one-particle density:

(at - L:f)pl(za ”U,t) =
7O, [pl(ac,v,t)/ﬂvpl(ac,v —w, t)dw]|. (14)

Here, L; is the free Fokker-Planck operator in scaled
units, and the operator L, effectively takes into account
interactions,

Li = 024 (0y — V/TOz) v,

15
L, = /\Il’(r)e*‘l'(r)g(r,w)e*“%dr, (15)

where we have introduced the translation operator e~ "%

which shifts the position of the function acted upon as
e "% py(z,v) = p1(z —r,v). Hence, L, corresponds to an
infinite series of the gradient 0,, with series coefficients set
by the microscopic potential. Equation (14) is the central
result of this letter: It provides the dynamics of the one-
particle density in a closed form for small average density.
Importantly, this closed form depends explicitly on the
details of the pairwise potential W.

To obtain a more explicit expression of L,, we next
substitute our perturbative result for g (eq. (12)) into the
definition of L, (eq. (15)), yielding

Ly =2wL, + 2L,0, + w? LDy, (16)
where, after integration by parts, we get
o0
Lo =T dr(v')2e Ve r0s,
0
Ly == [ defolrye™, (17)
0
o0
L. = f/ dr fi(r)e "%,
0
and
fo(s) = / dr¥'e™ " [1 -7 (2(9)* — 39")],
’ (18)

fi(s) = T/OO dr ¥ ((U)2 —0")e Y.

The integrands featuring in the definition of the operators
{La, Ly, Lc} (eq. (17)) are even with respect to r, provided
that ¥(r) = U(—r). It follows that these operators can be
expressed as a series of 92.

The functions fo and f; are analoguous to the Mayer
function which appears in the equilibrium virial expan-
sion [25]. Indeed, in the equilibrium limit (7 — 0), the
only surviving term in £, stems from the leading order in
fo, in agreement with the derivation for equilibrium over-
damped PBPs (see SM). This term is responsible for the
B coefficient in eq. (1) when that result is derived dynam-
ically for equilibrium systems. In that respect, eq. (16)
can be regarded as a direct generalization of the equilib-
rium virial expansion to the AOUP setting. Importantly,
eq. (16) shows that activity produces additional velocity-
dependent terms that are absent in equilibrium. In what
follows, we analyze in detail the corresponding dynam-
ics, in search for the onset of instability as a signature of
MIPS.

Linear stability analysis: eigenvalue problem. —
The stationary solution of eq. (14) is given by pgo) (v) =
(p/\/ﬁ)e*’ﬂ/? This solution corresponds to a uniform
density for the position and a Gaussian distribution for
the self-propulsion. In addition, as we will see shortly,
this is also the ground state of the free operator. In the
following, we expand perturbatively around p(lo) to find its
instability regions in parameter space: If the uniform state
is not stable, then we argue that the system undergoes
spinodal decomposition via a MIPS mechanism.
= pgo)(v) + e(x,v,t), with € a
small perturbation about the ground state pgo)
ing eq. (14) to linear order in &, we get

We cousider p;(z,v,t)
. Expand-

(0y—Ls) e(z,v,t) :Tpgo)(v)/L'Vé?xa(ac,v—w,t)dw, (19)
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where L, is defined in eq. (16), and
Ly = 0%+ (0y — ady)v,

oo (20)
a = T— 2pT3/2/ ()2 Ydr.
0

To analyze the time evolution of the perturbation given in
eq. (20), the difficulty lies in treating the effect of the op-
erator L, which contains information about microscopic
interactions. Then, it is convenient to expand ¢ in the
eigenfunctions of the bare theory, namely in the absence
of L. Interestingly, as stated previously, the bare theory
maps into underdamped passive Brownian motion, and
one can readily find the solution in the literature [33]; see
also [40]. The corresponding eigenfunctions, which we here
call the Fourier-Hermite basis, are

Yng(,0) = e_ik(”+‘“’)Un(U — 2iak), (21)
where U, is the Hermite function
1 1"
Unl2) = (e=2 = El g2 (a9

—H,
V2T V2T

with the property that (02 + 9,2)U,(2) = —nU,(z). In-
deed, acting on the Fourier-Hermite basis with the modi-
fied free operator L; yields

[:fwnk = *Aknwnk )

As the operator L¢ is not Hermitian, the conjugate basis is
not simply the complex conjugate. Instead, we introduce
the following conjugate basis:

Men = (ak)? +n. (23)

Unp(x,0) = k@I (v — 2iak),

— 1

(24)
Un(z) =

yielding
/dacdv Yonter (2, 0) Yk (2,0) = 208(k — K )6mn,  (25)

so that the orthogonality relation between the basis ¥,
and its conjugate v, indeed holds as expected.

Having obtained the eigenvectors and eigenvalues of the
bare theory, we decompose the perturbation € in eigen-
functions of £; as

o)=Y / con (O oni(z,0) k. (26)

Multiplying eq. (19) with the conjugate basis ¥, and inte-
grating over {x, v} yields the dynamics of the perturbation
e, in the Fourier-Hermite basis, as

bt = Ao+ 3 [ME + M+, e (20
n

where

(—iak)"+m e(ak)2

Wi
m!

kmn — 27—P£a,k (m - Tl),

7=0.20 7=0.50

_0'18,00 0.25 050 075  1.00 0.00 0.25

k k

0.75  1.00

Fig. 1: The value of the largest eigenvalue Amax as a function
of the wave vector k for v = 10,79 = 2, ¢ = 0.6, varying 7(blue
solid line). The orange dotted line represents the short length-
scale cut-off as we are only concerned with length-scales beyond
the particle size ro.

—iak n+m
M2, = “ampy 2 T e
. k n+m
R
a“m.:

X [m(m -1 +n(n—1)—2mn— 2(ak)2}.
(28)

Here, L) = fe””‘ﬁadk, with similar definitions for Ly, j
and L., where the operators {L,, Ly, L.} are defined in

eq. (17). If the matrix Minm = —NemOmn + M,ii,)m +
M ,Eizn + M ,Eizn, which controls the growth rate of the per-

turbation e, has no positive eigenvalue, the uniform so-
lution is stable; otherwise the system undergoes spinodal
decomposition. Hence we only need the largest eigenvalue
of M. As shown in the SM, the matrix M can be diagnon-
alized exactly. This calculation actually only amounts to
finding the maximum eigenvalue of a 3 x 3 matrix, which
can be done straightforwardly, while also perturbatively
keeping track of orders of 7.

Spinodal instability. — We now illustrate how our ap-
proach, valid for an arbitrary pairwise potential, can be de-
ployed to detect the onset of instability. We consider the
following short-ranged, weakly repusive interaction poten-
tial:

1
1—(r/ro)?
characterised by its strength v and range r, whose deriva-
tives are continuous at any order for r within [0, 7g]. The
maximum eigenvalue of the corresponding growth rate ma-
trix M, expanded analytically to first order in the persis-
tence time 7, is plotted against wave vector k in fig. 1
for various values of 7 and volume fraction ¢ = 2roN/V,
where 2r is taken as the size of the particle in 1D and
V = L is the system volume. As expected [15], the sys-
tem exhibits a spinodal instability at high 7 and packing
fraction ¢, for which the linear perturbation e is unsta-
ble, namely limg 0 Amax(k) = 07. Figure 2 shows the
stability diagram based on the sign of the longest wave-
length perturbation, Amax(27/L), as a function of 7 and

U(r) = vexp(— ), (29)

57004-p5
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¢, showing the transition between a uniform stable and a
phase-separated state. (Note that we could equally have
chosen the fastest growing mode to locate the spinodal.)

It is notable that our theory of interacting AOUPs
shows a spinodal instability. As in equilibrium systems
with attractions, it does this even at lowest order in the
virial-type expansion in powers of density. Just as holds
there, finding the instability requires using a low-density
theory at finite densities. However the purpose of this
approach is not to gain quantitative predictions about
the exact location of the spinodal curve, but rather to
establish that the macroscopic conditions for phase sepa-
ration can be satisfied, by considering microscopic inter-
action laws and dynamics. Notably, unlike in equilibrium,
the spinodal instability happens here for purely repulsive
interactions —a key feature of MIPS [15]. Our micro-
scopic calculation complements previous viewpoints based
on effective quasi-equilibrium attractions [41], and/or col-
lisional slowing down [16,42].

Nonetheless, there are several caveats and limitations to
our method. Firstly, the chosen potential is not strictly
hard-core, but depends on the strength parameter v. In
fact it is not possible to implement a true hard-core po-
tential due to the nature of the small 7 expansion for the
two-particle density, as there are terms directly propor-
tional to W or its derivatives. Unsurprisingly then, the
results presented here do depend on v. While overly large
v will break the small-7 expansion, we have checked that a
range of moderate values produce stability diagrams qual-
itatively similar to fig. 2. Secondly, for some parameters,
we found that the largest eigenvalue stays negative at low
wave number but turns positive (unstable) at large ones,
resembling an upside-down version of the right frame of
fig. 1. At first sight this might be taken as evidence of
new physics in the form of microphase separation at finite
wave number, an outcome generically predicted by some
field-theoretic models [14]. However, when this happens
the wave numbers in question (at or around the orange
line in fig. 1) are comparable to the inverse particle sepa-
ration 1/rg. As the theory proposed here is a macroscopic
one, it may not operate reliably in this large k& region, so
we do not take this as evidence of microphase separation
in repulsive AOUPs.

Conclusion. — Inspired by liquid-state theory of equi-
librium systems, we have started with the hierarchy of
density correlations for AOUPs, and closed it at second
order using a quasistatic approximation. This approach is
closely related to the virial expansion in the equilibrium
case. It yields a mean field theory for the one-point den-
sity from first principles. We have analysed the stability
of the uniform solution by looking at the largest eigen-
value of the growth matrix, and determined the onset of
a spinodal instability.

Our method deals directly with particle velocities as
well as positions. Perhaps more importantly, it is able to
capture (to lowest order in density) the physics of steep,

100
2
Phase separation i
. 3
107} ‘ ‘ ‘ ‘ -
0.0 0.2 04 06 0.8 1.0
¢

Fig. 2: Stability diagram in 7-¢ space showing Amax(27/L) for
L = 200,v = 10,70 = 2. The white region in the top-right
corner corresponds to when o < 0, where the method breaks
down, as it is no longer in the small 7 limit. The solid black
line is the spinodal instability.

short-ranged interactions. In that respect, it is distinct
from standard coarse-graining methods for nonequilibrium
systems, such as those based on Dean’s equation [43],
which starts as an exact representation but upon assum-
ing a smooth (coarse-grained) density becomes an expan-
sion in weak or slowly varying interaction forces. Dean’s
approach neglects strong, short-range interactions that
change the statistics of close encounters even when the
density, and hence the average interaction force, is small.
In equilibrium statistical mechanics, the virial expansion
is designed to handle exactly this situation. We have pre-
sented the leading order counterpart of this, for an active
system comprising interacting AOUPs.

There are some limitations to our method. Firstly, the
two-particle stationary solution used in the quasistatic
ansatz is not exact, but rather a small-persistence ap-
proximation, unlike the equilibrium case. Secondly, in
truncating the density-correlation hierarchy at the second
order, we assumed that the number density is low. Hence,
even assuming small persistence, our approach is quan-
titatively accurate only in the dilute limit. However, it
is a triumph of equilibrium liquid-state theories that the
small-density virial expansion successfully predicts liquid-
gas phase transitions, even though the regimes of phase
separation are often well beyond the dilute limit. Here,
we appeal to similar arguments to claim that our method
gives bottom-up confirmation of how phase separation can
occur in purely repulsive active systems, and it can be used
to study how the spinodal density varies with interaction
parameters and with the persistence time.

Going forward, as we alluded to previously, the fact
that the two-point velocity correlation is not a simple
product of single particle distributions has profound con-
sequences for other thermodynamic quantities, such as
pressure [17-19] and dissipation [20,21]. It would be
interesting to explore the implications of the velocity
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correlations by calculating such quantities from the two-
particle ansatz directly. Secondly, our approach here is
limited to soft potentials and small persistence due to the
reliance on the small 7 expansion of the two particle dis-
tribution. Suppose there were an active system that is
exactly solvable for two particles, or if one were to sup-
plement the calculation with numerical simulations of the
two-particle dynamics, it would be possible to obtain the
phase separating dynamics for high persistence and hard-
core potentials via our method.
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