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We analyze collective motion that occurs during rare (large deviation) events in systems of active particles,
both numerically and analytically. We discuss the associated dynamical phase transition to collective motion,
which occurs when the active work is biased towards larger values, and is associated with alignment of particles’
orientations. A finite biasing field is needed to induce spontaneous symmetry breaking, even in large systems.
Particle alignment is computed exactly for a system of two particles. For many-particle systems, we analyze the
symmetry breaking by an optimal-control representation of the biased dynamics, and we propose a fluctuating
hydrodynamic theory that captures the emergence of polar order in the biased state.
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I. INTRODUCTION

A. Motivation

Active matter emerged in the last decades as a novel
class of nonequilibrium soft systems where every constituent
consumes and dissipates energy to produce a self-propelled
motion [1–3]. It includes both living and social systems, such
as swarms of bacteria [4,5], bird flocks [6,7], and human
crowds [8,9], as well as synthetic systems, such as vibrated
particles [10,11] and self-catalytic colloids in a fuel bath
[12,13]. In these experimental systems, the combination of
self-propulsion and interaction can lead to collective behavior
without any equilibrium equivalent. Collective motion with
orientational order [10,11] and the spontaneous formation of
particle clusters despite the absence of attractive interactions
[12,13] are celebrated examples.

Minimal models have been proposed to capture these
collective effects, with a view to identifying the essential
ingredients of the dynamics which delineate generic classes
of active matter. The emergence of collective motion is gen-
erally described by the Vicsek model in terms of aligning
active particles [14], and its equivalent Toner-Tu model at
hydrodynamic level [15,16], whereas purely repulsive active
particles yielding a motility-induced phase separation (MIPS)
are usually considered to reproduce the behavior of isotropic
self-propelled particles [17–19]. To characterize the structure
and dynamics, thermodynamic tools inspired by equilibrium
have been proposed, such as pressure [20–22], others focus
specifically on the deviation from equilibrium, such as the
irreversibility of the dynamics [23–28] and the dissipation of
energy [29–33].

Several recent studies focused on large deviations of active
matter [32–42]. They consider transient rare events where

the system does not behave ergodically, in the sense that
time-averaged quantities differ significantly from the corre-
sponding ensemble averages, even for long times. In these
nonequilibrium systems, natural time-averaged quantities in-
clude measures of entropy production, dissipation, and work
[32–34,37,40–42], which are associated with breaking of
time-reversal symmetry, and whose large deviation behav-
ior obeys fluctuation theorems [43–45]. The associated rare
events are often accompanied by collective effects, and may
also lead to dynamical phase transitions, where symmetry is
spontaneously broken and atypical trajectories differ signifi-
cantly from the typical ones [46–50]. Numerical techniques
can be used to analyze these transient events by introduc-
ing a bias parameter which controls the distance from the
typical dynamics [51,52]. They open the door to studying
the microscopic mechanisms that stabilize atypical collective
behaviors. These techniques have already proved successful to
unveil dynamical transitions in glassy dynamics [53–55] and
high-dimensional chaotic chains [56,57].

In active matter, large deviation studies have already
revealed several kinds of dynamical phase transition. For
example, one may observe macroscopic clusters of particles
[32,33,37] and dynamically arrested states [37]. These transi-
tions are similar to those found in passive fluids [49,54,55,58].
Moreover, it was shown recently [37] that large deviations
of isotropic active particles can be associated with collec-
tive motion; this effect is not found in passive systems. The
physical origin of this collective motion is that orientational
order reduces the frequency with which particles collide,
which facilitates their motion. Given the established links be-
tween large deviations and optimal-control theory [49,50,59],
this result indicates that fluctuations in orientational order
might be harnessed, to enable efficient particle transport in
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FIG. 1. Schematic behavior of (left) the rate function, following
Fig. 1(a) of [37] and Fig. 2, and (right) the active work wτ as a
function of its conjugate field s, following Fig. 1(b) of [37] and
Figs. 3 and 4. Vertical dashed lines delimit the two regimes identified:
CM ≡ collectively moving state, HU ≡ isotropic hyperuniform state.
For positive s (or equivalently w < 〈wτ 〉), the system is phase sepa-
rated and arrested [37]; that case is not discussed here.

nonequilibrium systems. It also means that long-ranged ori-
entational order appears in large deviation events, despite the
absence of any microscopic interactions that favor alignment.
This stands in contrast to the usual (and intuitive) expectation
that collective motion emerges as a result of particle align-
ment.

B. Summary of main results

In this paper, we extend the analysis of collective motion
in Ref. [37], improving our understanding of this collective
motion phase, including the mechanism of spontaneous sym-
metry breaking, the location of the phase transition, and the
relationship of the collective motion with the hydrodynamic
dynamics of the system. We consider active Brownian parti-
cles (ABPs) as a popular model of overdamped self-propelled
particles [17,18]. For a long time interval of duration τ , we
focus on the time-averaged rate of the active work per particle
wτ , which quantifies how much the self-propulsion forces of
particles translate into actual displacement. The ensemble-
averaged rate is 〈wτ 〉. The active work is a measure of the
efficiency of self-propulsion, and is linked with dissipation
and entropy production; it also obeys a fluctuation theorem
[37]. Full definitions are given in Sec. II, below.

Consistent with previous observations of collective motion
[37], we focus on large deviations where the active work is
increased. The resulting picture is summarized in Fig. 1, as a
function of the active work w, and also its conjugate field s.
We restrict to situations where the steady state of the system
is spatially homogeneous, so the activity of the particles is not
enough to cause MIPS. We find that spontaneous symmetry
breaking occurs for values of the active work wτ beyond a
threshold w∗ that is strictly greater than its average value 〈wτ 〉.
There is a corresponding threshold for the biasing field, in that
collective motion takes place for s < −s∗ (this sign conven-
tion is chosen so that s∗ > 0, it means that the transition takes
place at s = −s∗ and not s = s∗). This result is supported by a
finite-size scaling analysis.

For ABPs, an important parameter is the rotational dif-
fusion constant Dr which determines the correlation time of
the self-propulsion force. We find that s∗ ∼ Dr for small Dr ,
which is the regime where the system differs strongly from a
passive fluid. A consequence of this analysis is that the sys-
tem is an isotropic fluid for −s∗ < s < 0. Generic arguments

[49,50,60] based on coupling between large deviations and
hydrodynamic modes mean that this phase is hyperuniform
[61]. (The collective motion phase may also be expected to
have a similar property but that question is not addressed
here.)

The fact that s∗ is strictly positive (not zero) resolves an
open question from [37]. If s∗ = 0, then symmetry break-
ing would be present for all wτ > 〈wτ 〉, in sufficiently large
systems. Such transitions can occur (always in the thermody-
namic limit) [37,53]: using the optimal-control formulation of
large deviations [49,50,59], they imply that a system’s behav-
ior may be changed qualitatively by very weak control forces,
or by applying significant forces to a very small fraction of
particles [37,50,60]. This is not the case for the collective
motion transition found here: sustaining long-ranged orienta-
tional order requires control forces of order unity.

To analyze the mechanism of symmetry breaking, we first
solve exactly a system of two active run-and-tumble par-
ticles (RTPs) to demonstrate that particles naturally align
during large-deviation events. Turning to many-particle sys-
tems, we exploit connections between large-deviation theory
and optimal control theory [49,50,59], and we also develop
a Landau-Ginzburg theory for the symmetry-breaking transi-
tion, which includes both the orientational order of the ABPs,
and their hydrodynamic density fluctuations. This gives a de-
tailed description of the collective motion phase.

The structure of the of the paper is as follows: Sec. II
describes the models and outlines the theoretical background;
Sec. III presents numerical results for collective motion;
Sec. IV analyzes the two-particle case; Sec. V explores the
mechanism using large-deviation bounds based on controlled
systems with orientational interactions; Sec. VI describes a
Landau-Ginzburg theory for the collective motion transition.
Conclusions are summarized in Sec. VII and several appen-
dices contain additional technical information.

II. MODEL AND METHODS

A. Active Brownian particles

We consider N active Brownian particles (ABPs) in two
spatial dimensions [37]. Their positions and orientations are ri

and θi. We define an orientation vector u(θi ) = (cos θi, sin θi )
which we sometimes abbreviate simply as ui. The particles
are self-propelled with (bare) speed v0, they interact through a
Weeks-Chandler-Andersen (WCA) interaction potential V (r)
with range σ and strength ε0. Define

U = 1

T

∑
1�i< j�N

V (|ri − r j |) (1)

as the dimensionless potential energy, which has been rescaled
by the temperature T . We take Boltzmann’s constant kB = 1.
The equations of motion are

ṙi = v0u(θi ) − D∇iU +
√

2D ηi,

θ̇i =
√

2Dr ξi, (2)

where ηi, ξi are zero-mean unit-variance Gaussian white
noises, and D, Dr are translational and rotational diffusivities.
The combination D∇iU in Eq. (2) should be interpreted as the
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product of a mobility μ and the gradient of potential energy;
here we have used μ = D/T by the fluctuation-dissipation
theorem.

For consistency with Refs. [18,37], we set Dr = 3D/σ 2

in accordance with the Stokes-Einstein-Debye relation. The
particles are contained in a periodic box of size L × L, the
dimensionless measure of density is φ = Nπσ 2/(4L2). For
numerical work we consider a single density φ = 0.65; results
for other densities are similar [37]. We also take T = ε0.

For a single isolated particle, the effect of the self-
propulsion force is that the particle follows a persistent
random walk with persistence length lp = v0/Dr . Dividing
this length by the particle diameter defines an important di-
mensionless control parameter

l̃p = v0

σDr
, (3)

which determines the effect of the active self-propulsion. For
l̃p → 0 we have a passive (equilibrium) system. For large
l̃p � 15 the self-propulsion leads to motility-induced phase
separation (MIPS) [19]. We note that since D ∝ Dr , increas-
ing l̃p changes the balance between the self-propulsion term
and the repulsive (WCA) forces in Eq. (2). This means that
large l̃p tends to make particles overlap more: they appear to
be softer.

When presenting numerical results, we take σ = 1 as the
unit of length and we fix the time unit by setting also v0 =
1. For theoretical calculations, we retain v0 and σ as explicit
quantities.

B. Dissipation and active work

We define the instantaneous dissipated power from a purely
mechanical argument as the rate of work that the particles
exert on the solvent [45,62]

Ẇ =
∑

i

ṙi ◦ 1

D
(ṙi −

√
2Dηi ), (4)

where ◦ is a Stratonovich product. We have absorbed a fac-
tor of T into W , to obtain a reduced (dimensionless) work.
Here and in the following, sums run over all particles, unless
otherwise stated. Using (2) and taking a time average, we find

1

τ

∫ τ

0
Ẇ (t ) dt = Nv2

0

D
wτ + 1

τ
[U (τ ) − U (0)], (5)

where

wτ = 1

v0Nτ

∑
i

∫ τ

0
u(θi ) ◦ dri (6)

is the (reduced) active work per particle [37]. This is a natural
measure of how efficiently active forces create motion. It is
normalized such that 〈wτ 〉 = 1 in the dilute limit φ → 0,
while 〈wτ 〉 = 0 for a completely jammed system. For a steady
state, the term involving U in Eq. (5) is zero on average, so the
average dissipation is fully determined by the average of the
active work.

This active work wτ is also related to the entropy pro-
duction rate in the full {ri, θi} configuration space (which
considers self-propulsion as a quantity that is even under time

reversal [27,37]). This differs in general from the entropy
production measured in position space {ri} [23,63,64].

Since (2) has three separate contributions, there is a natural
decomposition of the active work

wτ = 1 + w f ,τ + wη,τ , (7)

where the constant term stems from the product of the self-
propulsion direction with itself and

w f ,τ = −D

v0Nτ

∑
i

∫ τ

0
u(θi ) · ∇iU dt, (8)

wη,τ = 1

v0Nτ

∑
i

∫ τ

0
u(θi ) ◦

√
2Dηi dt . (9)

On average 〈wη,τ 〉 = 0, so 〈wτ 〉 = 1 + 〈w f ,τ 〉. The quan-
tity w f ,τ is negative on average because collisions between
particles tend to involve particle orientation vectors being
antiparallel to the interparticle force. In the following, we
consider situations where the system self-organizes to reduce
collisions, in which case w f ,τ becomes less negative (it in-
creases towards zero).

C. Large deviations

For any given N , the active work wτ satisfies a large-
deviation principle in the limit of large τ [37]:

p(wτ ) � exp [−τNI (wτ )], (10)

where I (wτ ) is a scaled rate function. We define the scaled
cumulant generating function (SCGF)

ψ (s) = lim
τ→∞

1

Nτ
ln 〈exp (−sNτwτ )〉, (11)

related to I (wτ ) by Legendre transformation [see Eq. (14)
below], and where we have introduced a biasing parameter s.
The SCGF can be obtained by solving an eigenvalue problem
(see Appendix A).

There is a useful analogy between this dynamical large de-
viation formalism and equilibrium statistical mechanics. We
recall the central features of this analogy (see also [46,47,50]).
Trajectories of our two-dimensional system are analogous
to configurations of a (2 + 1)-dimensional system. Also, the
biasing field s corresponds to a thermodynamic field conju-
gate to the active work. The SCGF ψ (s) corresponds to the
free energy density, and is thus sometimes referred to as the
dynamical free energy. Any singularity in this function is a
signature of a dynamical phase transition. In particular, we
focus below on phase transitions where rotational symmetry
of the system is spontaneously broken.

Continuing with this analogy, the average in Eq. (11) corre-
sponds to a partition function for Boltzmann-type distribution
of trajectories. Averages with respect to this distribution take
the form

〈A〉s = 〈A e−sNτwτ 〉
〈e−sNτwτ 〉 , (12)

where A is a dynamical observable. Numerical computation
of such averages is challenging in general: it is compara-
ble to computing a thermodynamic average at temperature
T by reweighting from an equilibrium system with temper-
ature T ′ �= T . To achieve this, we evolve simultaneously a
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FIG. 2. Rate function I (w) computed with (14) rescaled by D1/2
r

for persistence lengths l̃p = 2, 5, 10. The inset is a magnified version
of the behavior for small w − 〈wτ 〉. Parameter values: N = 50, φ =
0.65, nc = 103, tmax = 103.

large population of copies of the system to generate “biased
ensembles” by cloning and deleting some of these copies
at regular steps in order to enforce the dynamical effective
Boltzmann distribution. This method, known as a cloning
algorithm [51,65], allows estimation of averages like (11) and
(12) with a cost that scales linearly in τ , allowing direct access
to the large-τ limit. We implement it following [52,66], using
a modified equation of motion to evolve the clones, over a
maximal time period tmax. Details are given in Appendix B.

Of particular interest is the quantity

w(s) = lim
τ→∞〈wτ 〉s (13)

which obeys w(s) = −ψ ′(s). Since ψ is convex [47], this is a
decreasing function of s, we denote its inverse by s(w). The
rate function I is related to the SCGF by Legendre transform,
in particular,

I (w) = −ws(w) − ψ (s(w)) (14)

which allows computation of the rate function from the output
of a cloning simulation.

Figure 2 shows the rate function of the active work w �
〈wτ 〉, for different persistence lengths l̃p. The vertical axis has
been scaled by D−1/2

r which leads to data collapse near the
minimum. The rate function is minimal (and equal to zero) at
w = 〈wτ 〉 and its curvature there is related to the variance of
the active work as

1

I ′′(〈wτ 〉)
= lim

τ→∞ τN
[〈
w2

τ

〉 − 〈wτ 〉2
]
. (15)

Our data suggest that this variance is proportional to D−1/2
r .

As w increases from 〈wτ 〉, the rate function deviates from a
quadratic form, in particular, its curvature decreases, showing
that large fluctuations of wτ are less unlikely than a simple
Gaussian approximation would predict. This is related to a
dynamical phase transition, as we now explain.

III. EVIDENCE FOR SYMMETRY BREAKING

After introducing collective motion (Sec. III A), we present
numerical evidence for a spontaneous breaking of rotational
symmetry, on biasing towards larger values of the active work
(Sec. III B). We then show that for l̃p � 2, the dependence
on persistence length can be rationalized by comparison with
a simple controlled system (Sec. III C), but the situation for
l̃p = 1 is more complex, with several competing effects in play
(Sec. III D).

A. Collective motion and symmetry breaking

This work builds on Ref. [37], which investigated the same
biased ensembles. For s > 0, i.e., biasing towards trajecto-
ries of low active work, one finds a coexistence of a dense
jammed, arrested domain with a dilute vapor, given the name
phase-separated arrest (PSA). For s < 0, i.e., biasing towards
trajectories of high active work, collective motion is found
with aligned propulsion directions, despite the absence of
aligning interactions microscopically. In this work, we con-
sider exclusively trajectories with positive fluctuations of the
active work (s < 0). Reference [37] focused on a system
whose parameters lie (as N → ∞) within the MIPS region,
l̃p = 40 and φ = 0.65 (see Ref. [18] for the full phase diagram
of the system). Compared with [37], we focus here on lower
persistence lengths l̃p, such that the unbiased behavior of the
system is that of a homogeneous active fluid.

The physical reason for collective motion when s < 0 is
that if particles all travel in the same direction with speed
v0, they collide much less frequently, so w f ,τ is increased.
In particular, if the ui are random unit vectors, then there are
large relative velocities between particles (because |ui − u j |
is typically of order unity). On the other hand, perfectly
aligned orientations lead to |ui − u j | = 0, so the only sources
of relative motion are the passive noises ηi, η j . The larger the
relative velocities, the more often the particles collide, leading
to smaller (more negative) values of w f ,τ . Hence, collective
motion is a natural mechanism for increasing wτ .

It is also notable that wτ is closely related to the ratio
v(ρ)/v0 that appears in theories of MIPS [22], and measures
the reduction in particle speed due to collisions. This further
emphasizes that larger active work corresponds to reduced
collisions.

Since the collective motion phase is associated with spon-
taneous breaking of rotational symmetry, it is natural to
identify an order parameter

ν = 1

N

∑
i

ui. (16)

The particle orientations ui evolve independently of their
positions, so the steady state distribution of ν is simply the
distribution of the average of N random unit vectors. It is
convenient to define also the time average of the modulus of
the order parameter:

ντ = 1

τ

∫ τ

0
|ν(t )|dt . (17)

For large times one has 〈ντ 〉s = 〈|ν|〉s.
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FIG. 3. (a) Biased average of the active work 〈wτ 〉s. (b) The data
from (a) plotted using rescaled variables from (23) and (25), leading
to data collapse. (c) Biased average of the polarization norm 〈ν̄τ 〉s

[see Eq. (17)] as a function of the rescaled biasing parameter scon/Dr

[see Eq. (25)]. (d) The data from (c) plotted using rescaled variables,
showing data collapse. Parameter values (all panels): N = 50, φ =
0.65, nc = 103, tmax = 103.

For large N , the central limit theorem means that p(ν) →
(N/π )e−N |ν|2 (in distribution) and hence

〈ντ 〉 � 1

2

√
π

N
(18)

which tends to zero as N → ∞. On the other hand, symmetry-
broken states have

〈ντ 〉s = O(1) (19)

as N → ∞.
As N → ∞, the limiting value of 〈ντ 〉s is zero through-

out the isotropic phase, but nonzero in the collective motion
phase. This leads to a singularity at the transition point −s∗,
as expected for an order parameter. However, in finite sys-
tems, the quantity 〈|ν|〉s is always positive and has a smooth
(analytic) dependence on the field s. To identify the phase
transition in numerical studies, we use that the finite-size
scaling behavior (18) and (19) is different in the two phases.

B. Results for l̃p � 2

Recall that the persistence length l̃p measures the strength
of the active self-propulsion, compared to passive diffusion.
Figure 3 shows results obtained by cloning for l̃p � 2, where
the active propulsion is significant. Note that since we focus
throughout on s < 0, the point corresponding to the unbi-
ased (natural) dynamics is on the right of the graphs and
the strength of the bias increases from right to left. As the
bias becomes more negative, both the active work and the
orientational order parameter increase slowly at first, before
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FIG. 4. Biased averages of the active work 〈w〉s (a) and of
the polarization norm 〈|ν|〉s (b) as functions of the rescaled bias-
ing parameter scon/Dr [see Eq. (25)] for number of particles N =
10, 20, 30, 40, 50. Parameter values: l̃p = 5, φ = 0.65, nc = 103,
tmax = 103.

showing a more rapid increase. Similar to (15),

w′(s) = − lim
τ→∞ τN

[〈
w2

τ

〉
s − 〈wτ 〉2

s

]
(20)

so a rapid change in w(s) corresponds to a large variance in
the biased ensemble. The analogy with thermodynamic phase
transitions suggests that the critical point s = −s∗ coincides
with the point where |w′(s)| is maximal. Figures 3(b) and
3(d) show that appropriate changes of variable can be used to
collapse the data for different l̃p (details are given just below,
in Sec. III C).

Figure 4 shows the dependence on system size. For −s∗ <

s < 0, the order parameter decreases with N as in Eq. (18),
while for s < −s∗ it depends weakly on N as in Eq. (19).
Together with the large variance (20), this justifies our iden-
tification of s = −s∗ as a critical point at which symmetry
is spontaneously broken. The dependence of w(s) on N is
weaker; this function should be continuous at a critical point,
with a singularity in its derivative at −s∗; this is consistent
with the data.

C. Enhancement of self-propulsion in biased ensembles

We now discuss the reasons for the data collapse observed
in Figs. 3(b) and 3(d). Note that there are two nontrivial con-
tributions to wτ in Eq. (7), which affect the biased ensemble
(12) in different ways. To separate their effects, observe that
the average (12) in the biased ensemble may be reformulated
as

〈A〉s = 〈A e−sNτw f ,τ 〉vcon
s

〈e−sNτw f ,τ 〉vcon
s

, (21)

where w f ,τ was defined in Eq. (8); the averages on the right
hand side are computed for the natural dynamics of a con-
trolled ABP system in which the velocity v0 in Eq. (2) is
replaced by

vcon
s = v0

(
1 − 2sD

v2
0

)
. (22)

This result was noted previously in Refs. [37,42]. To
highlight connections between optimal-control theory and
large-deviation theory [49,50,59], we refer generically to sys-
tems with modified equations of motion as controlled systems
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(see also Sec. V A). In this case, the only modification is the
change in self-propulsion velocity, from v0 to vcon.

Equation (21) is an exact equality, even for finite τ .
This is explained in Appendix A by considering the bi-
ased time-evolution operators corresponding to (12) and (21).
Comparing (12) and (21), the equations of motion of the
system have been modified, and the contribution wη,τ has been
removed from the exponential biasing factor.

Noninteracting ABPs have w f ,τ = 0, in which case this
construction allows a full solution of the large-deviation prob-
lem. The average (21) in the biased ensemble reduces to an
unbiased steady state average for ABPs where only the self-
propulsion velocity is modified, leading to an active work

wfree(s) = 1 − 2sD

v2
0

. (23)

The linearity of this function means that the SCGF and the
rate function are quadratic: there are no collisions so the only
fluctuations of wτ come from the (Gaussian) noise, via (9).

We now consider the effect of interactions in the modified
system of (21), with propulsion velocity vcon. The normalized
work w f ,τ is not a particularly natural quantity in the modified
system because it contains a normalization factor v0 from (8).
It is more natural to rescale w f by wfree: the quantity that
appears in the exponent of (21) is then

sw f ,τ = scon w f ,τ

wfree
(24)

with

scon = s

(
1 − 2sD

v2
0

)
. (25)

The field scon is conjugate to the normalized work
(w f ,τ /wfree ): it is the natural biasing parameter for the con-
trolled system. Both s and scon have dimensions of inverse
time.

The data collapse in Figs. 3(b) and 3(d) is obtained by
plotting the normalized work 〈w f ,τ 〉s/w

free(s) against its con-
jugate variable scon, rescaled by Dr . The behavior of (21) can
thus be captured by the single parameter scon/Dr for l̃p � 2,
but it also depends separately on l̃p when that parameter is
smaller, as discussed in Sec. III D. Hence, the decomposition
of wτ as (7) allows its large deviations to be analyzed as a
combination of two factors: the bias acts on wη,τ to increase
the self-propulsion; it acts on w f ,τ to generate alignment and
collective motion. The reasons why scon should be scaled by
Dr and not by some other rate (for example, v0/σ ) will be
discussed in later sections.

D. The case l̃p = 1

We now turn to cases where the self-propulsion is weaker,
corresponding to smaller l̃p. Figure 5 shows results for sev-
eral system sizes, comparing l̃p = 1 with l̃p = 5. The order
parameter 〈ν〉s no longer collapses perfectly but the qualitative
behavior is the same as for larger l̃p. In particular the collective
motion transition is robust. However, the active work 〈wτ 〉s no
longer collapses as a function of scon/Dr : there are significant
deviations. In other words, the dependence of (21) can no
longer be captured by the single dimensionless parameter
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FIG. 5. (a) Biased average of the active work rescaled by the
biased free particle active work [see Eq. (23)]. (b) Biased average of
the polarization norm 〈ν̄τ 〉s [see Eq. (17)]. (c) Biased average of the
force part of the active work. (d) Biased average of the noise part of
the active work. Parameter values: φ = 0.65, nc = 102, tmax = 102.

scon/Dr , but it depends also on l̃p when that parameter is
(relatively) small.

Physically, this can be rationalized by considering two
mechanisms for events with large w f ,τ ; in practice, these are
events where particles spend less time in contact. The first
mechanism is collective motion: if particles all move with
fixed speed vcon in the same direction, they never collide, as
discussed in Sec. III A. A second mechanism is isotropic: par-
ticles move in random directions, but tend to avoid each other
when they get close. When l̃p is large, then the self-propulsion
velocity dominates particles’ relative velocity, and the collec-
tive motion mechanism dominates. This is the regime where
the data collapses in Fig. 3. We argue that the isotropic
mechanism is becoming important for smaller l̃p, at which
point the response to the bias s acquires a more complicated
dependence on s/Dr and l̃p.

Note that the isotropic mechanism does not rely on active
self-propulsion and can be relevant in passive systems, when
considering large deviations of quantities like w f ,τ . On the
other hand, the collective motion mechanism is inherent to
active systems. It is therefore not surprising that the isotropic
mechanism becomes more important for small l̃p, where the
system is behaving more like a passive fluid. The limit l̃p → 0
would be an interesting direction for future study; our expec-
tation is that collective motion still appears for scon � −Dr ,
but a more detailed understanding of the isotropic mechanism
would be required, in order to establish this.

In addition, Fig. 5(d) shows the noise contribution to the
active work wη,τ . For l̃p = 1, this contribution to wτ is com-
parable to the force part w f ,τ while for larger l̃p, the force
contribution w f ,τ is the larger contribution. From (23), the
noise part is of order −sD/v2

0; taking s ∼ −Dr then this scales
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as l̃−2
p and is indeed small in the active limit of large l̃p. The

force part w f ,τ is of order unity in this limit.

IV. SPONTANEOUS ALIGNMENT OF TWO RTPS

As a preliminary step before describing a detailed theory of
collective motion, we illustrate the mechanism for collective
motion by an analytic computation of large deviations of the
active work, for two RTPs on a one-dimensional periodic ring.
Since the system is finite, there cannot be any spontaneous
symmetry breaking, but we do find that the particles tend
to align their orientations when biased to large active work.
An outline of the large-deviation calculations can be found in
Appendix C. Analysis of the unbiased behavior of the system
can be found in Ref. [67].

The RTPs have positions ri for i = 1, 2, with periodic
boundaries, in a domain of size L. Their active self-propulsion
velocities are αiv0 with αi = ±1. Particle i tumbles with rate
τ−1

p , which corresponds to αi changing its sign, and we intro-
duce l = v0τp the persistence length. The particles interact by
a pair potential V , and there is no thermal diffusion. Let the
particle separation be r12 = |r1 − r2|. Hence, the equation of
motion (between tumbles) is

ṙi = αiv0 − ∂

∂ri
V (r12). (26)

The potential V is short ranged with V (r12) → ∞ as r12 →
0, and a length scale ε such that V (r12) = 0 for r12 > ε. For
particles in contact, there is a particular distance r∗ (less than
ε) such that V ′(r∗) = −v0, so that two particles with opposite
orientations can have a force-balanced state with ṙi = 0. We
focus on the limit of hard particles such that ε → 0 and also
r∗ → 0.

The unnormalized instantaneous rate of active work is de-
fined analogous to (8) as

ẇRTP
f = v0(α1 − α2)

∂

∂r1
V (r12), (27)

wRTP
f = lim

τ→∞
1

τ

∫ τ

0
ẇRTP

f (t ) dt, (28)

while there is no analog of the noise term wη because there is
no thermal noise. In the limit of hard particles one has simply
that ẇRTP

f = −2v2
0 if the particles are in a force-balanced

touching state (for example, r12 = 0 with α1 = 1 = −α2) and
ẇRTP

f = 0 otherwise. We denote by λ the biasing field conju-
gate to the active work, and introduce the cumulant generating
function

ψRTP(λ) = lim
τ→∞

1

τ
ln

〈
e−λ

∫ τ

0 ẇRTP
f (t ) dt 〉 (29)

such that 〈wRTP
f 〉λ = −∂λψ

RTP(λ) as usual. Here, λ is playing
the role of s in the ABP system.

This quantity can be obtained by solving an eigenprob-
lem, as discussed in Appendix C. Figure 6(a) shows that
ψRTP converges to a constant when λ → −∞, therefore,
limλ→−∞〈wRTP

f 〉λ = 0, indicating that collisions are com-
pletely suppressed in this regime.

The analog of (17) in this system is

νRTP
τ = 1

τ

∫ τ

0

1 + α1(t )α2(t )

2
dt, (30)
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FIG. 6. (a) Rescaled CGF ψ̃RTP = τpψ
RTP from (C35) as a func-

tion of the rescaled biasing parameter λ̃ = λlv0, for different values
of the rescaled ring length L̃ = L/l . (b) Polarization νRTP

ave as defined
in Eq. (31), showing particle alignment for λ̃ < 0. The dashed lines
show νRTP

end , which is evaluated at the end of the trajectory instead of
as an average over all times [see also Eqs. (32) and (C64)].

which is between 0 and 1, with an average value of 1
2 in

the unbiased state where the α’s are independent. Its average
value in the biased ensemble is

νRTP
ave (λ) = lim

τ→∞
〈
νRTP

τ

〉
λ
. (31)

Note that this quantity is averaged over the whole trajectory,
and its determination requires one to consider both the left
and right eigenvectors of the associated eigenproblem. The
computation is described in Appendix C, which also considers
the quantity

νRTP
end =

〈
1 + α1(τ )α2(τ )

2

〉
λ

(32)

which measures degree of alignment at the final time τ .
Figure 6(b) shows results. Starting from the zero-bias state

where all configurations are equiprobable (νRTP = 1
2 ), the po-

larization increases as λ is reduced from zero, corresponding
to large positive fluctuations of the active work. For large
negative λ, the polarization eventually reaches a plateau value.
At fixed persistence length, the larger systems have weaker
polarization. On the contrary, the polarization decreases for
positive λ, indicating that antialigned states are more probable
than aligned states, so particles spend more time in collision.
As usual, the time-averaged measurement νRTP

ave responds more
strongly to the bias than the corresponding measurement νRTP

end
at the final time [52].

The main conclusion from this analysis is that a one-
dimensional system of two self-propelled particles already
shows that biasing towards fewer collisions promotes the
alignment of the particles’ orientations. We also describe in
Appendix C 3 a scaling regime that is relevant when the sys-
tem is very large, which allows some simplification of the
resulting expressions.

V. LARGE-DEVIATION MECHANISM

We now present an analysis of the mechanism by which
collective motion occurs in the system of many interacting
ABPs, as in Figs. 2–5. For two RTPs, we have seen that
alignment is a natural mechanism for suppressing collisions
between particles. The same is true for ABPs. To characterize
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the collective motion state, we compare the biased ensemble
(12) with other ensembles that we define either by modifying
the equations of motion of the system (via control forces,
Secs. V A and V B), or by applying different kinds of bias
to the system (Sec. V C). Numerical results are presented in
Sec. V D.

We show that controlling the rotational dynamics of the
system is enough to qualitatively reproduce the active work
rate function in the collective motion state (Sec. V E). This
suggests that the fluctuations of the active work are strongly
coupled to those of the orientational order parameter in this
regime. However, this control fails at capturing these fluctua-
tions in the isotropic state (Sec. V F), calling for an alternative
mechanism in this domain. Finally, we provide additional ev-
idence that the transition to collective motion is at s = −s∗ ≈
−Dr (Sec. V G).

A. Control forces

Within large deviation theory, it is often useful to compare
biased ensembles like (12) with ensembles where the dynam-
ics of the system is modified by control forces [49,50,59]. In
principle, biased ensembles can be reproduced exactly by a
suitable (optimally controlled) system. However, these opti-
mal control forces cannot usually be derived exactly, except
in idealized models.

As a generic controlled ABP system we take equations of
motion

ṙi = vconui − D∇i(U + U con) +
√

2D ηi,

θ̇i = −Dr
∂U con

∂θi
+

√
2Drξi, (33)

where U con is a control potential (dependent on all particle po-
sitions and orientations) and vcon is a parameter (independent
of positions and orientations).

For ABPs in the biased ensemble (12), we explain in Ap-
pendix A that the optimally controlled system has

vcon = vcon
s ,

U con = U opt
s , (34)

where vcon
s was defined in Eq. (22) and U opt

s must be deter-
mined from the solution to an eigenproblem [see (A2) and
(A3)]. Note that the equations of motion for the optimally
controlled process have exactly the same random noise terms
as the original process (2); this is a general feature of large
deviations in this class of system [68].

We consider several controlled systems where the orienta-
tional dynamics of ABPs is modified by long-ranged coupling
that favors particle alignment. We test numerically how well
they capture the properties of the biased ensemble (12), and
hence the true large-deviation mechanism. This is achieved by
deriving bounds on the rate function I (w). The bounds would
be exact equalities if our approximations for the optimally
controlled dynamics were exact. In fact, the bounds are close
but not exact; from this we conclude that our approximations
capture important features of the large-deviation mechanism,
but they also miss important parts of the physics. In contrast
to this work, the bound considered in Ref. [42] is restricted

to U con = 0, in which case the control forces only affect the
self-propulsion velocity vcon.

To construct bounds, let P be the path probability measure
for the ABPs, and let Pcon be the corresponding measure for
the system with control forces. Averages in the controlled
system are denoted 〈. . .〉con. Then, for any (ergodic) controlled
system with 〈wτ 〉con = w we have

I (w) � lim
τ→∞

1

Nτ
DKL(Pcon||P), (35)

where DKL(Q||P) is the Kullback-Leibler (KL) divergence
between distributions P and Q [see Eq. (A5)]. In the anal-
ogy between large-deviation theory and thermodynamics, (35)
corresponds to the Gibbs-Bogoliubov inequality [50].

As a general controlled system we take (33). In this case,
the KL divergence can be computed [see (A7) and (A8)]. The
key point is that if the control forces are optimal, then (35)
is an equality. We denote the path probability distribution for
this optimally controlled system by Popt

s so

I (w(s)) = lim
τ→∞

1

Nτ
DKL

(
Popt

s

∣∣∣∣P)
. (36)

Averages with respect to Popt
s also match averages in the

biased ensemble, that is, 〈A〉s � 〈A〉opt [see Eq. (12)], as
τ → ∞.

As a general rule, the closer is the controlled system to
the true fluctuation mechanism, the more accurate will be
the bound (35). The intuition is that choosing a controlled
process corresponds to proposing a mechanism for the rare
event, and this mechanism can occur with a particular proba-
bility of order exp[−DKL(Pcon||P)]. Hence, smaller values of
DKL correspond to mechanisms that are exponentially more
likely, and the mechanism that minimizes DKL is an accurate
representation of the rare event.

B. Coupling among ABP orientations and upper
bound on rate function

As already discussed in Ref. [37], the spontaneous break-
ing of symmetry for s < 0 leads to a natural comparison
with systems where torques act on the ABPs, so that their
orientations tend to align. This phenomenon is reminiscent
of the flocking observed in systems of Vicsek particles [14],
when the orientational coupling between neighboring parti-
cles exceeds a threshold set by the effective temperature of
the rotational dynamics. To explore this effect, take as control
potential an infinite-ranged (mean-field) coupling among the
orientations, with strength g > 0 corresponding to a ferromag-
netic interaction. That is,

U con
g = −gN

Dr
|ν|2 (37)

independent of particle positions. The direction of the or-
der parameter is determined by an angle ϕ through ν =
|ν|(cos ϕ, sin ϕ). The equation for the ABP orientation in the
controlled system can then be written as

θ̇i = −g|ν| sin(θi − ϕ) +
√

2Dr ξi. (38)

Similar to the original ABPs, this orientational equation
of motion is independent of all particle positions. Hence,
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integrating out the particle positions leads to a mean-field sys-
tem of interacting rotors, which is fully described by (38). For
large N , Appendix D 1 shows that this system spontaneously
breaks rotational symmetry at g = Dr . That is, for g > Dr ,
then 〈|ν|〉con = O(1) as N → ∞, but 〈|ν|〉con = O(N−1/2) for
g < Dr . The resulting situation is similar to (19) and (18).

It was argued in Ref. [37] that this very simple controlled
model can already capture quite accurately the collective mo-
tion phase, and it can predict the rate function in this regime.
To explore this idea in more detail, we write Pcon

g for the path
probability distribution for the ABP dynamics with control
potential U con

g . Using this distribution with Eq. (35) yields an
upper bound

I
(
wcon

g

)
� lim

τ→∞
1

Nτ
DKL

(
Pcon

g

∣∣∣∣P)
, (39)

where wcon
g = 〈wτ 〉con with control potential U con

g . This bound
would be an equality if the controlled model fully captured the
collective motion phase. It will be compared with the exact
result in Sec. V D.

C. Large deviations of order parameter and lower
bound on rate function

We also derive a lower bound on the rate function, similar
to [37]. To achieve this, we consider large deviations of the
orientational order parameter. Specifically, we consider ντ ,
defined in Eq. (17) as the time average of the modulus of
the order parameter. The statistical properties of other similar
quantities (for example, the modulus of the time average) have
different dependence on N, τ , so some care is required in the
following arguments.

The quantity ντ obeys a large-deviation principle as τ →
∞ which we write as

p(ντ ) � exp [−τNJ1(ντ )], (40)

where J1 is the rate function. For large N , the function J1 can
be obtained analytically (see Appendix D). In particular, one
has for large N and small ν that

lim
N→∞

J1(ν) = 1

2
Drν

2 + O(ν4). (41)

Moreover, in this joint limit of large N and small ν, the
optimally controlled dynamics associated with these large de-
viations can be captured exactly by (38). The large deviations
of ν also satisfy a (general) bound analogous to (35), which is

J1(ν) � lim
τ→∞

1

Nτ
DKL(Pcon||P) (42)

which holds for any controlled dynamics with 〈|ν|〉con = ν.
These results can be used to obtain a bound on I (w). We

write ν(s) = 〈|ν|〉s. Now consider (42) with Pcon = Popt
s , as

the optimally controlled dynamics for large deviations of the
active work, as in Eq. (36). This optimally controlled dynam-
ics has 〈wτ 〉con = w(s) and 〈|ν|〉con = ν(s). Combining (42)
with (36), we obtain

I (w(s)) � J1(ν(s)). (43)

This is a lower bound on I (w), which was derived in Ref. [37]
by the contraction principle of large deviations. From (42),
the bound (43) is exact if the optimally controlled dynamics

for large deviations of w (that is Popt
s ) is also an optimally

controlled dynamics for large deviations of ν.
Note that evaluation of (43) requires knowledge of ν(s),

which is not available analytically; instead, one must perform
cloning simulations. For this reason, (43) is not a predictive re-
sult. However, it is a useful result because the accuracy of the
bound reveals the extent to which the (unknown) mechanism
for large deviations of w is similar to the (known) mechanism
for large deviations of ν, as we now discuss.

D. Numerical evaluation of bounds

Figure 7 shows results for the rate function I (w) (Sec. II C),
compared with the upper and lower bounds (39) and (43). We
show data for l̃p = 5 as well as l̃p = 40, which was the case
considered in Ref. [37].

To evaluate the upper bound, we perform unbiased simu-
lations of ABPs with the rotational equation of motion given
by Eq. (38), over a range of torque parameters g. We com-
pute DKL(Pcon

g ||P) using (A10) and the average active work
〈wτ 〉con. The upper bounds in Fig. 7 are parametric plots using
these data (with g as the parameter).

For the lower bound, we compute J1(ν̄) from cloning sim-
ulations of rotors (see Appendix D 3) and ν(s) from cloning
simulations of ABPs, then compose these functions to obtain
the right hand side of Eq. (43). We stress that the number
of particles N and the rotational diffusivity Dr have to be
consistent between simulations for this comparison to hold.

The bounds of Fig. 7 capture the main features of the rate
function but there are significant deviations, especially for
smaller l̃p. We note in particular that (i) the bounds (39) and
(43) are not accurate for small values of w − 〈w〉0 but become
accurate for larger w; (ii) the bounds are more accurate for
larger l̃p. We now discuss these observations.

E. Collective motion (symmetry-broken) state

From Fig. 3, the system is in the collective motion phase for
w > w∗ with w∗ ≈ 0.4, weakly dependent on l̃p. For l̃p = 5,
the collective motion phase is w − 〈wτ 〉 � 0.15. In this range,
the inset of Fig. 7 shows that upper and lower bounds are
accurate to around 20% of the rate function. For l̃p = 40, the
accuracy of the lower bound is even better.

In both cases, the lower bound is more accurate. Part of
this effect may be attributed to the fact that the upper bound
does not account for the enhancement of self-propulsion in the
biased ensemble (Sec. III C). The lower bound does account
(at least partly) for this effect since it uses the functions w(s)
and ν(s) as computed in cloning simulations. The upper bound
could be improved by including the controlled velocity vcon as
an additional variational parameter in Eq. (35) and optimizing
it numerically, similar to [42,69]. However, it is sufficient for
our argument to keep vcon = v0.

The conclusion for this regime is that fluctuations of the
active work are strongly coupled to those of the orientational
order parameter. As a result, the bounds (39) and (43) can
capture the behavior of the rate function almost quantitatively.
As noted in Ref. [37], the log-probability of a large fluctuation
of wτ is almost the same as that of the corresponding orienta-
tional fluctuation.
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FIG. 7. (a) Rate function I (w) from the cloning algorithm at l̃p = 5, compared with the upper and lower bounds (39) and (43). For the
rate function, the solid line is a spline interpolation. To evaluate bounds, results for 〈ν̄τ 〉s(w) and J1(ν̄ ) are obtained by the cloning algorithm,
and D(Pcon

g(w)||P) is obtained by simulation of the controlled dynamics. Fourth order polynomial interpolation is then used to obtain values
at the desired values of w. (Inset) Relative error between the bounds and the rate function. (b) Similar results as (a), for l̃p = 40. General
parameter values: N = 10, φ = 0.65. Cloning parameter values: nc = 103, tmax = 103, Nruns = 10. Parameters for controlled dynamics: tmax =
104, Nruns = 10.

F. Isotropic state 〈wτ〉 < w < w∗

When the active work is close to its average value, the
system does not break symmetry (recall Fig. 3) and one also
sees that the bounds in Fig. 7 do not capture the rate func-
tion in an accurate way. The symmetry-breaking transition
happens at w = w∗. As N → ∞, isotropic systems (with
w < w∗) have ν(s) = 0 so the lower bound (43) tends to
zero. The rate function is not zero so the bound is not at all
accurate in this range. The conclusion for this regime is that
fluctuations where wτ is enhanced can also occur by an alter-
native fluctuation mechanism (not collective motion), and that
this mechanism is dominant in the isotropic phase. As noted
above, the modified self-propulsion vcon = vcon

s is relevant in
this regime, and particles may also be repelled from each
other without any alignment, as discussed in Sec. III D. We
explain in Sec. VI that hydrodynamic density fluctuations are
also relevant. In other words, several effects act to enhance the
active work in this regime, there is no collective motion, and
the bounds of Fig. 7 do not follow the rate function accurately.

G. Comparison with controlled system

To conclude our discussion of orientational fluctuations,
we consider Fig. 8 which further illustrates the relationship
between controlled dynamics and the large-deviation mecha-
nisms. Figures 8(a) and 8(c) show the dependence of the active
work, as either s or g is varied. Also, Figs. 8(b), 8(d), and 8(f)
show the orientational order parameter.

Note that s is a biasing field in the sense of large deviations
while g is a physical coupling between ABP orientations;
nevertheless, the response to both kinds of perturbation is
similar, in that both 〈wτ 〉λ and 〈|ν|〉λ increase. The responses
are different when the system is close to its unbiased steady
state, in that the biased ensemble responds mostly by a change

in 〈wτ 〉λ while the controlled system responds mostly by in-
creasing 〈|ν|〉λ. However, when the system is perturbed further
from its steady state, both systems respond by entering a
collective motion state, in which their behavior is similar, with
long-ranged orientational order and enhanced active work.

Finally, Fig. 8(e) compares how large a coupling g is
required in order to achieve an active work equal to w(s).
In the collective motion phase, one sees that g(w(s)) ≈ −s.
From (D5), rotational symmetry is spontaneously broken for
the controlled system with g > Dr . Hence, Figs. 8(b), 8(d),
and 8(f) are consistent with the observation from Fig. 3 that
symmetry is broken in the biased ensemble for s < −s∗ with
s∗ ≈ Dr . A concrete theoretical explanation for this effect will
be given in the next section.

VI. LANDAU-GINZBURG THEORY

We have explained many aspects of the collective motion
phase of ABPs in terms of mean-field interactions among their
orientations. We now discuss how this mean-field picture can
be embedded in a hydrodynamic theory (Sec. VI A), similar to
macroscopic fluctuation theory [70]. We show that it predicts
spontaneous symmetry breaking for s < −s∗ with s∗ ≈ Dr

(Sec. VI B), as well as a suppression of density fluctuations
for s < 0 (Sec. VI C).

A. Theory

The minimal description that allows modeling of the
symmetry-broken state is to consider a local density field ρ

and a corresponding polarization field P. These are defined on

022603-10



COLLECTIVE MOTION IN LARGE DEVIATIONS … PHYSICAL REVIEW E 103, 022603 (2021)

−1.5 −1.0 −0.5 0.0
s/Dr

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

w
τ

s

N =

10

20

50

l̃p = 5l̃p = 5

0.25 0.45 0.65
wτ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ν̄ τ

N = 10

N = 20

N = 50

l̃p = 2

. . . s

. . . g

. . . s

. . . g

−1.5 −1.0 −0.5 0.0
−g/Dr

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

w
τ

g

l̃p = 5

N =

10

20

50

N =

10

20

50

0.25 0.45 0.65
wτ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ν̄ τ
N = 10

N = 20

N = 50

l̃p = 5

. . . s

. . . g

. . . s

. . . g

−1.5 −1.0 −0.5 0.0
s/Dr

−0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

g
(w

(s
))

/D
r

N =

10

20

50

l̃p = 5

−s/Dr

l̃p = 5

−s/Dr

0.25 0.45 0.65
wτ

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

ν̄ τ

N = 10

N = 20

N = 50

l̃p = 10

. . . s

. . . g

. . . s

. . . g

)b()a(

)d

(f)(e)

()c(

FIG. 8. (a) Active work as a function of the biasing parame-
ter from cloning simulations. Solid lines are spline interpolations.
(b) Parametric plot of 〈|ν|〉 = 〈 1

τ

∫ τ

0 dt |ν(t )|〉 as a function of the
active work. We show results for biased ensembles (〈. . .〉s) and for
controlled dynamics (〈. . .〉g). (c) Active work as a function of the
torque parameter w in the controlled (modified) dynamics. Solid
lines correspond to spline interpolations, points correspond to nu-
merical data. (d) Similar to (b), with l̃p = 5. (e) Composition of
the relation g(w) from modified dynamics and w(s) from cloning.
(f) Similar to (b) and (d), with l̃p = 10. General parameter values:
φ = 0.65. Cloning parameter values: nc = 103, tmax = 102, Nruns =
10. Controlled dynamics parameter values: tmax = 104, Nruns = 10.

hydrodynamic length scales: given a mesoscopic region �r

centered at r, we define

ρ(r) = 1

|�r|
∫

�r

∑
i

δ(r − ri )dr, (44)

P(r) = 1

ρ(r)|�r|
∫

�r

∑
i

uiδ(r − ri )dr, (45)

where |�r| denotes the volume of �r. The polarization P is
normalized as the average orientation (so |P|2 < 1).

With this choice, it is notable that ρ is a slow hydrody-
namic field, in the sense that density fluctuations on large
length scales � relax on long timescales of order �2. On the
other hand, P is a fast field, in that polarization fluctuations
on all scales relax quickly (on a timescale of order D−1

r ) to
quasisteady states which depend in general on ρ.

As a minimal model for ABPs in biased ensembles, we pro-
pose (in a “top-down” coarse-grained approach) the following
(Itō) equations of motion for (ρ, P), similar to [71]:

ρ̇ = −∇ · J,

J = Jd +
√

2σ (ρ)η, (46)

Ṗ = −γ (ρ, P) f (P) + b(ρ, P)∇ρ +
√

2γ (ρ, P)ξ,

where σ and γ are noise strengths; b is a coupling between po-
larization and density gradients; f is a thermodynamic force
that acts on the polarization; Jd is the deterministic part of the
current; and η is a Gaussian white noise with zero mean and
variance 〈ηα (t )ηβ (t ′)〉 = δαβδ(t − t ′). We take a deterministic
current

Jd = v0ρP − Dc(ρ)∇ρ, (47)

where the first term incorporates the effect of self-propulsion,
while Dc(ρ) is the hydrodynamic (collective) diffusion con-
stant, which depends on density. Our theory is restricted to
states without MIPS; this requires that Dc(ρ) > 0 for all ρ.
(In fact. the diffusion constant is additionally renormalized by
polarization fluctuations, as discussed in Appendix E, and it is
the renormalized diffusion constant that should be positive.)
In the absence of MIPS, it is consistent to assume that ∇ρ is
O(�−1) where � is the hydrodynamic length scale. This is the
reason that higher gradients of ρ are neglected in Eq. (46).

It is also useful to compare (46) with [72], which is a
rigorous hydrodynamic theory for a similar model, except that
the polarization is a slow field in that case. In the ABP context,
their model definition corresponds to reducing v0 and Dr as
the system size increases, so that the polarization becomes
a hydrodynamic variable. Then, Eqs. (5) and (6) from [72]
can be compared with Eq. (46), on identifying their m as our
ρP, and noting that they do not analyze fluctuations about the
hydrodynamic limit, so all noise terms are absent. The details
of the nonlinear terms differ between the models, but they
have a similar structure. The model of [72] corresponds to an
idealized limiting case, but it shows how such theories can be
justified rigorously. Comparing (46) with the Toner-Tu theory
[15] and other theories for collective motion such as [73], our
minimal model (46) has fewer couplings, in particular, it lacks
advective terms in the polarization equation. Such terms are
not relevant at the level considered here, but might be required
for a quantitative description of fluctuations in the collective
motion phase.

On the hydrodynamic scale, it is consistent to approximate
the (total) active work of a trajectory as a function of the
density and polarization fields:

wτ Nτ =
∫ τ

0

∫
[0,L]2

ω(ρ, P) dr dt, (48)

where ω(ρ, P) is the typical (average) active work per unit
volume, in a region with density ρ and polarization P.

Now consider a large system of linear size L, and define
hydrodynamic coordinates as

r̃ = r/L, t̃ = Dt/L2. (49)

We also express the fields in these rescaled variables as
ρ̃(r̃, t̃ ) = ρ(r̃L, t̃L2/D) and P̃(r̃, t̃ ) = P(r̃L, t̃L2/D). [Note,
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there is no rescaling of the fields themselves, hence,
|P̃(r̃, t̃ )|2 � 1 is the modulus of the local polarization, and
ρ̃(r̃, t̃ )σ 2π/4 is a local area fraction, of the same order as the
global area fraction φ = ρ̄σ 2π/4.] At the expense of some
heavy notation, we consistently use tildes to indicate that the
hydrodynamic rescaling has been performed. Where deriva-
tives act on fields with tildes, they are taken with respect to
the rescaled variables, for example, ˙̃ρ = (∂ρ̃/∂ t̃ ). We define
J̃ = JL/D so that the continuity equation retains its form

˙̃ρ = −∇ · J̃. (50)

Using (46) and working in hydrodynamic coordinates, we
obtain a formula for the probability of a trajectory in the
biased ensemble,

Prob[ρ̃, J̃, P̃] ∝ exp

(
−L2

∫ τ̃

0

∫
[0,1]2

S[ρ̃, J̃, P̃] dt̃ dx̃

)
(51)

which is valid only if (50) holds (else the probability is zero);
the Lagrangian is

S = D

4σ
|J̃ − J̃d|2 + 1

4Dγ

∣∣∣D

L
˙̃P + γ f L − b∇ρ̃

∣∣∣2

+ sL2

D
ω,

(52)
where J̃d = JdL/D and we have omitted the dependence of
σ, γ , ω on (ρ̃, P̃), for ease of writing.

The terms in Eq. (52) that involve J and ω are familiar
from other analyses of large deviations in systems with hy-
drodynamic modes [60,74]. In particular, the fact that s enters
through the combination sL2 is familiar from earlier studies
[58], it reflects the fact that hydrodynamic degrees of freedom
respond strongly to the bias because of their slow relaxation.
However, the factors of L that appear in the term involving
P̃ are not expected in hydrodynamic theories: they reflect the
fact that P is a fast field.

B. Mean-field analysis

We first consider the case where (ρ̃, J̃, P̃) are independent
of space and time. Hence, we set ρ̃ = ρ̄ where

ρ̄ = N

L2
(53)

is the average density. The action is minimized by taking J̃ =
(v0Lρ̄/D)P̃; note that this is O(L) when expressed in these
hydrodynamic variables because the self-propulsion leads to
ballistic motion. Then,

S = L2

[
γ

4D
| f |2 + sω(ρ̄, P)

D

]
. (54)

The next step is to use properties of ABPs to express
the remaining quantities in terms of microscopic parameters.
Setting s = 0 in Eq. (54) and combining with (51), one can
read off the probability of a trajectory where the polarization is
fixed at P for all times between 0 and τ . This same probability
can be computed applying large-deviation theory to the mi-
croscopic ABP model: the relevant large-deviation principle
is given in Eq. (D8), and Appendix D 2 explains how the rate
function J can be computed as the Legendre transform of a
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FIG. 9. (a) Normalized covariance of the active work wτ and the
squared average polarization |ντ |2 = | 1

τ

∫ τ

0 ν(t ) dt |2. (b) Normalized
variance of the active work with a ln N fit in dashed line. Parameter
values: φ = 0.65, Nruns = (a) 2 × 102, (b) 6 × 102.

Mathieu function (see also [35]). Hence,

S = L2

D
[ρ̄J (P) + sω(ρ̄, P)]. (55)

Recalling that ω is defined as the active work per unit
volume for a system with prescribed density and polarization,
we have ω(ρ̄, 0) = ρ̄〈wτ 〉. For P �= 0, the consistent choice is
to define ω by considering an ensemble of trajectories that is
biased by the polarization. Details are given in Appendix D 2;
we define 〈·〉h as an average analogous to (12), but with the
bias acting on the polarization [see (D10)]. Then,

ω(ρ̄, P) = 〈ρ̄wτ 〉h(P), (56)

where h(P) is defined by 〈ντ 〉h(P) = P. For small P, we show
in Appendix D 4 that

ω(ρ̄, P) = ρ̄

[
〈wτ 〉 + cω

2
|P|2 + O(|P|4)

]
, (57)

cω = ρ̄τ 2L4D2
r

2
Cov(wτ , |ντ |2), (58)

where Cov(x, y) = 〈xy〉 − 〈x〉〈y〉 is the covariance in the nat-
ural (unbiased) ABP dynamics. Figure 9(a) shows that this
covariance is positive. That is, trajectories with larger polar-
ization also tend to have larger active work.

To analyze spontaneous symmetry breaking, we require
a Taylor expansion of S for small P. The behavior of J at
small polarization can be obtained exactly: the result is (D18),
which implies that

J (P) = 1
2 Dr |P|2 + O(|P|4). (59)

Hence, (55) becomes

S = ρ̄L2

D

[
s〈wτ 〉 + 1

2
|P|2(Dr + scω ) + O(|P|4)

]
. (60)

Finally, minimizing the action, we predict spontaneous sym-
metry breaking for s < −s∗ with s∗ = Dr/cω. From Fig. 9(a),
one sees that cω depends weakly on Dr , so this is consistent
with the observation of Sec. III that s∗ ∝ Dr .

Physically, cω > 0 reflects the fact that breaking symmetry
reduces collisions between particles and increases the active
work. This effect is quadratic in P, and so is the rate function
J associated with symmetry-breaking events. Hence, both
contributions in Eq. (60) have the same scaling with P (and
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with L), leading to a critical point s∗ (independent of L), for
which the coefficients of the two relevant terms balance each
other.

Since this result was obtained by a top-down coarse-
grained approach, one can expect that it should be quite
generic, in that the same theory would be a natural description
of other active particles like RTPs. The key ingredient here is
that the coefficient cω in Eq. (57) should be positive, which
means by (58) that a larger polarization is correlated (in the
unbiased steady state) with a larger active work. In ABPs,
there is a clear mechanism for this, that particles’ relative
velocities are reduced if they align because ui is a unit vector.
In other active systems, this would have to be checked on a
case-by-case basis.

C. Fluctuations

This mean-field analysis predicts that symmetry is spon-
taneously broken for s < −s∗ with s∗ > 0. This means that
the system remains isotropic in a finite range around s = 0.
However, the fact that s enters (52) as sL2 indicates that
the system can respond strongly to the bias already for
very small s, via hydrodynamic fluctuations. As explained in
Appendix E, the (fast) polarization field is not relevant on the
hydrodynamic scale so it is sufficient for small bias to consider
a scalar theory for the density. In this case, density fluctuations
and fluctuations of the active work can be understood based on
previous studies [60,74].

The behavior depends on the sign of ∂2

∂ρ2 ω(ρ̄, 0) which
we abbreviate here by ω̄′′

0 . For ABPs then ω̄′′
0 < 0. The first

consequence of the hydrodynamic theory is that the variance
of wτ (under the natural dynamics) has a hydrodynamic con-
tribution. Appendix E shows that the asymptotic variance as
L → ∞ behaves as

ρ̄L2 lim
τ→∞ τ Var(wτ )0 = (ω̄′′

0σ (ρ̄ ))2

4πρ̄Dc(ρ̄)3
[ln L + O(1)]. (61)

Figure 9(b) shows numerical data that are consistent with this
prediction.

The hydrodynamic theory of Appendix E also predicts for
ω̄′′

0 < 0 that a system described by (46) becomes inhomoge-
neous (phase separation) for s > sc with [42,60,74]

scL2 = −2π2Dc(ρ̄ )2

ω̄′′
0σ (ρ̄)

. (62)

Recall that ω̄′′
0 < 0, which means that sc > 0.

For any negative value of s, one expects the system to be
hyperuniform [60,74]. Write ρq for a Fourier component of
the density field and Ss(q) = 〈ρqρ−q〉s for the structure factor
in the biased ensemble, where q = |q|. The structure factor is
derived in Eq. (E16) which shows that it behaves for small q
as

Ss(q) = 〈ρqρ−q〉s �
{
χ0, s = 0
bsq, s < 0 (63)

where χ0 = σ (ρ̄)/Dc(ρ̄) and bs are constants [the behavior of
bs and can be read from (E16)].

Comparison of these theoretical predictions with numerical
results requires some care because the numerical results are
limited to small systems, while the hydrodynamic theory is
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FIG. 10. (a) Structure factor as function of wave vector k =
2π/λ, zoomed on highest computed wavelengths, at biasing param-
eter s. (b) Main plot: Orientation correlation as a function of the
distance at biasing parameter s. (b) Inset: Sum of the correlation
function. Parameter values: N = 102, l̃p = 5, φ = 0.65, nc = 103,
tmax = 102.

valid only if the system size is much larger than all micro-
scopic length scales.

The existence of inhomogeneous states for s > sc was al-
ready discussed in Ref. [37]. For s � 0, Fig. 10(a) shows the
behavior of the structure factor in the isotropic phase. For
s = 0, the system is a homogeneous fluid so limq→0 S(q) must
be a positive constant. However, the numerical results show
S(q) increasing as q is reduced towards zero. The reason is
that the system is not large enough to show the hydrodynamic
behavior; in a much larger system, then smaller wave vectors
would be accessible, and convergence of S(q) to its small-q
limit would be apparent. Similarly, for s < 0, one expects in
very large systems to observe S(q) ∝ q at small q, but this
is not apparent from our numerical results in small systems.
Preliminary data (not shown) indicate that systems with N =
104 are sufficient to characterize the small-q limit of S(q) at
l̃p = 5, so hyperuniformity should be apparent in systems of
that size, if computations were possible in the biased ensem-
ble. However, a clear demonstration of hyperuniformity would
likely require still larger systems. Despite these restrictions,
the numerical results show that density fluctuations are sup-
pressed in biased ensemble with s < 0, which is qualitatively
consistent with the theory, and with the physical reasoning
that reduced density fluctuations tend to suppress collisions
and enhance the active work.

Density fluctuations also have consequences for the
symmetry-breaking transition at s = −s∗. First, the transition
takes place between a hyperuniform isotropic state and a
symmetry-broken state (which may also be hyperuniform). In
this case, the simple relationship (48) should be adjusted to
account for the fact that the density fluctuations near s∗ are
different from those of the biased ensemble (D10). This effect
presumably shifts the value of s∗ but we expect qualitative
predictions of mean-field theory to remain valid.
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An additional question is how density fluctuations cou-
ple with those of the polarization, close to the critical point
(s = −s∗). If one ignores the coupling between P and ρ in
Eq. (52), one expects a transition in the universality class of an
XY model in (2 + 1) = 3 dimensions (two spatial dimensions
and one of time). This situation is familiar in quantum phase
transitions for rotors [75].

However, the coupling to a hydrodynamic density field
may change this universality class. For example, in the Vicsek
model, a locally aligning interaction leads to clustering of the
particles. As a result, symmetry breaking for the orientations
is coupled with collective motion and with phase separation
[14,16]. By contrast, for the phase transition considered here,
clustering is suppressed (hyperuniformity) [see Fig. 10(a)].
Also, Fig. 10 shows the spatial orientation correlation function

Cu,s(�r) =
∫ τ

0

〈∑N
i, j=1 u(θi(t )) · u(θ j (t )) δi j (�r, t )

〉
s
dt∫ τ

0

〈∑N
i, j=1 δi j (�r, t )

〉
s
dt

,

δi j (�r, t ) = δ[|ri(t ) − r j (t )| − �r]. (64)

This average is performed over trajectories extracted from the
cloning algorithm [52]. In these (small) systems, the main
effect of the bias on fluctuations in the isotropic phase seems
to be a constant (infinite-ranged) additive contribution to C
[see Fig. 10(b)]. This contribution is of order 1/N so that

χu,s =
∫

Cu,s(r) 2πr dr

= 1

N

〈(
N∑

i=1

u(θi(t ))

)2〉
t,s

(65)

is of order unity, and exactly equal to 1 in natural dynamics
(s = 0). Such behavior can be accounted for in mean-field
theory: one might expect nontrivial spatial structure to emerge
in larger systems, but analysis of such effects is beyond the
scope of this work.

VII. CONCLUSION

We have analyzed large deviations with enhanced active
work in an ABP system. As found in Ref. [37], this results in
spontaneous breaking of rotational symmetry and collective
motion. We presented numerical evidence and theoretical ar-
guments that this transition occurs at s = −s∗ with s∗ � Dr ,
at least when Dr is small (l̃p � 1). This means that collective
motion sets in above a threshold w∗ for the active work, with
w∗ > 〈wτ 〉.

We have compared the behavior of the collective motion
state with that of a controlled system where the ABP orien-
tations interact via an infinite-ranged (mean-field) coupling.
This controlled system captures the large deviations semi-
quantitatively. Based on a hydrodynamic theory, we have also
explained that we expect hyperuniform behavior for values of
the active work between 〈wτ 〉 and w∗. We discussed the extent
to which the predictions of this theory should be generic in
systems of self-propelled particles. As already anticipated in
the Introduction, the result that w∗ �= 〈wτ 〉 (and hence s∗ �= 0)
resolves an open question from [37]. Hence, I (w∗) > 0 too,
so [by (10)] the log-probability cost of these large-deviation

events is proportional to Nτ , in contrast to (much smaller)
cost of large-deviation events that originate in diffusive hy-
drodynamic modes [49,58,60]. It also means that the control
forces (or torques) required to stabilize the long-ranged order
are significant: that is, the control forces (torques) in Eq. (38)
are applied to all particles and have typical magnitudes of
order unity, in the thermodynamic limit. In the analogy of [37]
between optimal control and evolutionary strategies, it means
that alignment cannot be exploited without some cost, but the
enhanced self-propulsion efficiency is still significant.

Despite the progress of this work for understanding col-
lective motion in biased ensembles, several questions remain
open, including the nature of the critical point where the sym-
metry is broken. A related point is whether a controlled system
with a more complicated (distance-dependent) coupling of
orientations would capture the collective motion phase more
accurately. Another point of comparison is collective motion
in aligning particles, such as the Vicsek model and its variants
[14,73,76]. In that case, breaking of rotational symmetry is
often accompanied by phase separation into dense (polar)
and more dilute (apolar) regions, which leads to a first-order
transition to collective motion [16].

For the systems considered here, the evidence [for exam-
ple, Fig. 10(a)] is that density fluctuations are suppressed in
the collective motion phase, contrary to the enhanced den-
sity fluctuations that one might expect in systems with polar
clusters. However, these numerical results for small systems
are not sufficient to settle the nature of the phase transition
and its fluctuations. A detailed analysis of symmetry breaking
within the Landau-Ginzburg theory of Sec. VI would be an
interesting direction for future work.
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APPENDIX A: LARGE DEVIATIONS FOR ABPs

1. Eigenvalue problem

Large deviations of wτ can be analyzed through the eigen-
values of an operator called the backwards generator. For
compactness of notation, we define (only for this section)
s̃ = (s/v0). Using results of [68,78], the eigenvalue equation
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is

ψ (s)Fs = D
∑

i

(∇i − s̃ui ) · (∇i − s̃ui )Fs

+
∑

i

(v0ui − D∇iU ) · (∇i − s̃ui )Fs

+ Dr

∑
i

∂2Fs

∂θ2
i

, (A1)

where Fs = Fs(r1, . . . , rN , θ1, . . . , θN ) is the eigenvector and
ψ (s) the eigenvalue. This may be simplified as

ψ (s)Fs =
∑

i

[(v0 − 2s̃D)ui − D∇iU ] · ∇iFs

+
∑

i

[
D∇2

i Fs + Dr
∂2Fs

∂θ2
i

]

+
∑

i

[s̃D(ui · ∇iU ) + Ds̃2 − s̃/v0]Fs, (A2)

where the first two lines correspond to the generator of an
ABP system with a modified swim velocity vcon

s as defined
in Eq. (22), and the last line corresponds to a bias in which
the only nontrivial term is v0D(ui · ∇iU ), which is the scalar
product between the swim velocity and the interparticle force,
as it appears in the w f part of the active work.

The operator on the right hand side of (A2) is equal (up
to an additive constant) to the operator that generates the
biased ensemble on the right hand side of (21). The additive
constant affects the eigenvalue but it does not affect the biased
ensemble. This is sufficient to establish (21).

From the solution to the eigenproblem, one may construct
a corresponding optimally controlled system, whose natural
dynamics matches that of the biased ensemble. The corre-
sponding optimal-control potential is

U opt
s = −2 lnFs. (A3)

To construct the controlled system, consider the controlled
dynamics (33). The backwards generator for this model is
Lcon, which acts on functions G = G(r1, . . . , rN , θ1, . . . , θN )
as

Lcon(G) =
∑

i

[
D∇2

i G + Dr
∂2G
∂θ2

i

− Dr
∂U con

∂θi

∂G
∂θi

]

+
∑

i

[vconui − D∇i(U + U con)] · ∇iG. (A4)

Denoting the right hand side of (A2) by Ls(Fs), the generator
of the optimally controlled dynamics may be then derived
using the general formula Lcon(G) = F−1

s Ls(FsG) − ψ (s)G
(see, for example, [68]). Combining these ingredients, the
optimally controlled dynamics is given by (33) and (34).

2. KL divergence between controlled and natural dynamics

To derive a formula for the KL divergence in Eq. (39), we
recall its definition

DKL(Q||P) =
∫

Q(x) ln
Q(x)

P(x)
dx, (A5)

where Q, P are probability densities. Using standard tech-
niques in stochastic processes [79–81], the path probabil-
ity distribution for ABPs can be derived. We work in
Stratonovich calculus throughout. The path probability is
P(X ) ∝ exp[−∑

i

∫ τ

0 Si(X (t ))dt] where X = {ri, θi}τ0 indi-
cates a path and

Si = |ṙi − v0ui + D∇iU |2
4D

+ θ̇2
i

4Dr
− D

2
∇2

i U . (A6)

[We have neglected here a contribution to P(X ) from the
initial condition; this does not cause a problem because we
consider finally the long-time limit in Eq. (39).]

Defining the corresponding quantity Scon
i for the controlled

process one has

DKL(Pcon||P) = Nτ
〈
Si − Scon

i

〉
con, (A7)

where the average is computed in the steady state of the
controlled process. One finds

Si − Scon
i = vcon − v0

2D
ui · ṙi + �con

i

− |(vcon − v0)ui − D∇iU con|2
4D

+ D

2
∇2U con

− 1

4Dr

(
∂U con

∂θi

)2

+ Dr

2

(
∂2U con

∂θ2
i

)
, (A8)

where �con
i has the property that

∑
i

∫ τ

0 �con
i dτ = [U con(0) −

U con(τ )]/2 which will be negligible on taking the limit in
Eq. (39). The KL divergence is the average of this quantity
with respect to the controlled dynamics; the fact that U con

appears in both the action and in the equation of motion can
be used to simplify the formulas for DKL as, for example, in
Eq. (H3) of [37]. Such simplifications are not essential for this
work, so we omit them.

For the controlled dynamics of (37) and (38), it is useful to
denote by ϕ the angle between ν and the x axis. This can be
obtained by considering

|ν|eiϕ = 1

N

∑
j

eiθ j . (A9)

Then, the KL divergence of (39) can be obtained from (A7)
and (A8), using ∇iU con = 0 and vcon = v0, as

lim
τ→∞

1

Nτ
DKL

(
Pcon

g

∣∣∣∣P) =
〈
gI1,τ − g2

Dr
I2,τ

〉
con

− g

N
, (A10)

where

I1,τ = 1

τ

∫ τ

0
|ν(t )|2 dt, (A11)

I2,τ = 1

Nτ

∫ τ

0
|ν(t )|2

∑
i

sin[θi(t ) − ϕ(t )]2 dt . (A12)

The steady state averages of these integrals are independent of
τ ; hence, the right hand side of (A10) is also independent of τ

and no limit is required there.
The KL divergence of (A10) was evaluated by numerical

simulation of the controlled dynamics to obtain the upper
bounds in Fig. 7. (Analytic results are available for this
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quantity in the large-N limit, but numerical comparison with
the large-deviation rate function requires results for finite N .)

APPENDIX B: CLONING ALGORITHM
WITH MODIFIED DYNAMICS

1. Modified dynamics

The cloning algorithm is applied to ABPs similarly to [37].
The number of clones is denoted by nc. We typically repeat
each computation Nruns times: we take a simple average of the
results and use the standard error for an error bar. Convergence
with respect to nc is discussed below. The computational cost
of our calculations is controlled primarily by nc.

Given that we want to work with nc as small as possible, the
low probabilities of large-deviation events can be the origin
of large systematic errors [51,52,82]. To improve the conver-
gence of the algorithm, we use a modification (or control) of
the dynamics, informed by the typical behavior of the system
for large fluctuations of the biasing observable. In particular,
we take (33) with vcon = vcon

s from (22) and U con = Ug from
(37). The choice of the parameter g will be discussed below.

Following the same steps as (A8), we obtain the result of
[37] that the path probability distributions for the controlled
and original dynamics are related as

P[X ] exp[−sNτ (wτ )] ∝ Pcon[X ] exp
( − sNτwmod

τ

)
, (B1)

where X denotes a trajectory and the modified active work
obeys

swmod
τ = s

(
1 − sD

v2
0

+ w f ,τ

)
− g

(
1

N
− I1,τ + g

Dr
I2,τ

)
,

(B2)
where w f ,τ is the force part of the active work from (8), and
the integrals I1,τ and I2,τ are defined in Eqs. (A11) and (A12).

Physically, this means that the biased ensemble (12) for
the ABP model (2) can be formulated alternatively as a biased
ensemble for the controlled ABP model, with a modified bias
swmod. Hence, the cloning algorithm is valid as a method for
sampling large deviations for any choice of the parameter g
(including g = 0).

The role of the parameter g is to improve the numerical
efficiency, and hence to obtain accurate results with smaller
numbers of clones. Several methods have been proposed for
determining suitable values of such parameters [52,82,83].
Here, we adopt the following method, similar to [37], where
the value is chosen “on the fly” within the algorithm. We note
that for the controlled dynamics with potential Ug, we have for
large N (and g < Dr) that

〈|ν|2〉con = 1

N

1

1 − gD−1
r

. (B3)

The derivation is given in Appendix D 1. We obtained good
results from the cloning algorithm by inverting this equation
for g and taking

g = Dr

(
1 − 1

Nt−1
〈 ∫ t

0 dt ′ ∣∣ν(t ′)|2〉clo

)
, (B4)

where 〈. . .〉clo designates an average over the clones within the
algorithm. Figure 11 shows examples of such torque param-

)b()a(

FIG. 11. Torque parameter g as a function of time using the
relation (B4) and setting g(t = 0) = 0, for different (a) biasing pa-
rameters s and (b) number of particles N . Parameter values: φ =
0.65, tmax = 103, nc = 103.

eters as functions of the simulation time. Note, this always
gives g < Dr , the natural dynamics of the controlled system
is always in the paramagnetic phase. However, as the biased
system moves into the ferromagnetic phase we find that g
gets close to Dr , and the controlled system approaches the
mean-field critical point where fluctuations of ν are large.
These large fluctuations are helpful for the algorithm, in that
they generate a wide range of trajectories, from which the
cloning part of the algorithm can select those with large values
of wτ .

2. Convergence with respect to the number of clones

As stated in Ref. [52], the accuracy of the cloning algo-
rithm is limited by the number nc of copies of our system
which we simultaneously evolve. Most of the results presented
in the main text were computed for nc = 103 which is signif-
icantly lower than what was used, for example, in Ref. [37]
(see Appendix D of that work).

We show in Fig. 12 relative errors on the values of the
active work and the order parameter for two values of the
persistence length and for N = 50 particles, when varying
the number of clones from nc = 103 to nc = 5 × 103, with
respect to their value for the former number of clones. We
have that the behavior of the relative error on both these
quantities, which is at most of the order of 1%, indicates that
the qualitative conclusions of the main text are robust.

0
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FIG. 12. Relative error of the value active work (left) and or-
der parameter (right) to their value at nc = 103 (leftmost value),
�err〈•〉s = [〈•〉s − 〈•〉s(nc = 103)]/〈•〉s(nc = 103). Parameter val-
ues: N = 50, φ = 0.65, tmax = 103, Nruns = 10.
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APPENDIX C: BIASED TRAJECTORIES OF TWO
RTPs ON A RING

We consider the system of two RTPs defined in Sec. IV.
The SCGF of (29) is the largest eigenvalue ψRTP(λ) that
solves

ψRTP(λ)Pλ = (
L − λẇRTP

f I
)
Pλ, (C1)

where L is the Fokker-Planck operator acting on a probability
distribution vector Pλ ≡ (P++

λ , P−−
λ , P+−

λ , P−+
λ ). The vector

Pλ depends on the distance r between the particles, which
is measured clockwise around the circular system, starting at
particle 1. Hence, 0 � r � L. Since P is a vector, the operator
L is a 4 × 4 matrix, and the Fokker-Planck equation is

Ṗα1α2 =
∑

α′
1,α

′
2=±1

Lα1α2,α
′
1α

′
2 Pα′

1α
′
2 , (C2)

where the matrix elements of L can be read off from the
Fokker-Planck equation that corresponds to (26), which is

Ṗα1α2 = v0(α1 − α2)
∂

∂r
Pα1α2 + 2

∂

∂r

(
Pα1α2

∂

∂r
V

)

+ τ−1
p (Pα1α2 + Pα1α2 − 2Pα1α2 ) (C3)

in which αi = −αi. In the hard-core limit, we expect the
probability density functions to take the form [67,84]

Pα1α2
λ (r) = ε

α1α2
λ (r) + γ

α1α2,l
λ δ(r) + γ

α1α2,r
λ δ(L − r). (C4)

Here, ε
α1α2
λ is a smooth function of r that describes the prob-

ability to find the particles with the given orientations, at a
separation r. Also, γ

α1α2,l
λ and γ

α1α2,r
λ indicate the probability

that the particles are touching with particle 1 to the left (l) or
right (r) of particle 2, with the prescribed orientations.

Particles never remain touching if their velocities point
away from each other so γ +−,r

λ = γ −+,l
λ = 0. Note, however,

that particles may be touching but moving parallel to each
other, γ ++,r

λ > 0 in general. In the hard-core limit, we have
from (27) that ẇRTP

f is nonzero only when particles are touch-
ing and have opposite orientation, so

ẇRTP
f P+−

λ = −2v2
0γ

+−,l
λ δ(r),

ẇRTP
f P−+

λ = −2v2
0γ

−+,r
λ δ(L − r) (C5)

with ẇRTP
f P++

λ = 0 = ẇRTP
f P−−

λ .
The dominant eigenvector for (C1) obeys symmetry re-

lations stemming from particle interchangeability (C6) and
parity symmetry (C7):

Pα1α2
λ (r) = Pα2α1

λ (L − r), (C6)

Pα1α2
λ (r) = Pα1α2

λ (L − r). (C7)

We take as normalization condition∫ L

0

∑
α1,α2=±1

Pα1α2
λ (r) dr = 1. (C8)

The symmetry relations (C6) and (C7) imply for the probabil-
ity density function of aligned particles that

ε++
λ (r) = ε−−

λ (r) = εαα
λ (r), (C9)

εαα
λ (r) = εαα

λ (L − r). (C10)

Similarly, for the “sticking” terms

γ +−,r
λ = γ −+,l

λ = γ αα
λ , (C11)

γ αα,l
λ = γ αα,r

λ = γ αα
λ , (C12)

which are to be interpreted as definitions of γ αα
λ , γ αα

λ . These
symmetry relations greatly simplify our calculations.

We highlight that the introduction of thermal diffusion
in Eq. (26) would smooth out the δ functions associated to
sticking in Eq. (C4), which will be replaced by exponentials
decaying away from contact on a length scale set by the
diffusivity [85].

1. Unbiased steady state distribution

We first solve the case without bias (λ = 0) in steady state
(Ṗ = 0). Evaluating Eq. (C3) for r �= 0, L gives

0 = 2v0
∂

∂r
εαα

0 (r) + τ−1
p

[
2εαα

0 (r) − 2εαα
0 (r)

]
. (C13)

Using the symmetry properties (C6) and (C7) leads to
∂rε

αα
0 (r) = 0 and hence εαα

0 (r) = εαα
0 (r) = ε0. In other

words, P is independent of r and of the orientations, except
when the particles are touching.

Relations between γ αα
0 and γ αα

0 follow from integrating
Eq. (C3) from r = 0− to ε and then taking the hard-core limit:

τ−1
p

(
γ αα

0 − 2γ αα
0

) = 0, (C14)

−2v0ε0 + τ−1
p 2γ αα

0 = 0. (C15)

Finally, using the normalization condition (C8),

4Lε0 + 4γ αα
0 + 2γ αα

0 = 1. (C16)

One can then solve to obtain

P++
0 (r) = P−−

0 (r) = a + laδ(r) + laδ(L − r), (C17)

P+−
0 (r) = a + 2laδ(r), (C18)

P−+
0 (r) = a + 2laδ(L − r), (C19)

where a = [4(L + 2l )]−1, and the persistence length l = v0τp,
as in the main text. This exactly recovers the continuous space
and time results of Ref. [67], Eqs. (11) and (12). Also,

〈
ẇRTP

f

〉 = − 2lv2
0

L + 2l
(C20)

by (C5).
Note that a steady state distribution that is nonuniform also

for particles not in contact, as observed for RTPs on a dis-
crete lattice [67], can be introduced by considering finite-time
tumbles [86] or thermal diffusion [85].

2. Biased steady state distribution

We now solve the general biased case (λ ∈ R) using (C1).
The method follows the unbiased case. For particles not in
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contact we have

ψRTP(λ)εαα
λ (r)

= τ−1
p

[
εαα
λ (r) + εαα

λ (L − r) − 2εαα
λ (r)

]
, (C21)

ψRTP(λ)εαα
λ (r) = 2αv0

∂

∂r
εαα
λ (r)

+ τ−1
p

[
2εαα

λ (r) − 2εαα
λ (r)

]
. (C22)

Hence,

d2

dr2

(
εαα
λ + εαα

λ

) = k2
λ

(
εαα
λ + εαα

λ

)
(C23)

with

k2
λl2 = τpψ

RTP(λ)

4
[4 + τpψ

RTP(λ)]. (C24)

Note that kλ may be either real or imaginary. The solutions for
ε (in both cases) can then be expressed as

εαα
λ (r) = 1

2 + τpψRTP(λ)
Aλ(e−kλr + e−kλ(L−r) ), (C25)

2εαα
λ (r) =

(
1 − 2αkλl

2 + τpψRTP(λ)

)
Aλe−kλr

+
(

1 + 2αkλl

2 + τpψRTP(λ)

)
Aλe−kλ(L−r), (C26)

where there is a single constant of integration Aλ because we
have enforced the symmetry (C10).

We now derive four equations that can be used to express
(γ αα

λ , γ αα
λ , Aλ, λ) as functions of ψRTP(λ), which enables a

full solution of this problem. Integrating Eq. (C1) from 0− to
ε, as in the unbiased case, and taking the ++ component of
the vector P, one obtains

ψRTP(λ)γ αα
λ = τ−1

p

(
γ αα

λ − 2γ αα
λ

)
. (C27)

Similarly, taking the P−+ component gives

0 = − 2v0ε
−+
λ (0+) + τ−1

p 2γ αα
λ , (C28)

in which ε−+
λ (0+) may be substituted using (C26) to obtain

γ αα
λ = τpv0Aλ

2

[
(1 + e−kλL ) + 2kλl

2 + τpψRTP(λ)
(1 − e−kλL )

]
.

(C29)
In addition, using (C25) and (C26) in the normalization con-
dition (C8) leads to

1 = 2γ αα
λ [4 + τpψ

RTP(λ)]

+ 2Aλ

kλ

(1 − e−kλL )[4 + τpψ
RTP(λ)]

2 + τpψRTP(λ)
, (C30)

where we have also used Eq. (C27) to eliminate γ αα .
Now, since the Fokker-Planck equation (C3) preserves the

normalization of P, one may integrate (C1) over r and sum
over α1, α2, then apply (C8) to obtain ψRTP(λ) = 4λv2

0γ
αα
λ .

Then, use (C27) to obtain

ψRTP(λ) = 4γ αα
λ λv2

0[2 + τpψ
RTP(λ)]. (C31)

Equations (C27) and (C29)–(C31) are the promised four equa-
tions for (γ αα

λ , γ αα
λ , Aλ, λ), in terms of ψRTP(λ). The problem

is now solved by computing the inverse of ψRTP(λ), which
amounts to treating ψRTP as a parameter and solving for λ and
the other variables. Note that kλ is fully determined by the
value of ψRTP [see (C24)].

To simplify the computation, we introduce dimensionless
variables that treat the persistence length l as the unit of
length:

λ̃ = λlv0,

Ãλ̃ = Aλl,

ψ̃RTP = τpψ
RTP, (C32)

k̃λ = kλl,

L̃ = L

l
.

The ratio γ αα

λ̃
/Ãλ̃ determines the relative probabilities of the

particles being in contact or separated. One has from (C29)
that this ratio can be expressed in terms of ψ̃RTP as

γ αα

λ̃

Ãλ̃

= 1 + e−k̃λ̃L̃

2
+ k̃λ̃(1 − e−k̃λ̃L̃ )

2 + ψ̃RTP
(C33)

and dividing Eq. (C30) by Eq. (C31) yields (after some rear-
rangements)

λ̃ = ψ̃RTP(ψ̃RTP + 4)

2(ψ̃RTP + 2)

[
1 + Ãλ̃

γ αα

λ̃

(1 − e−k̃λL̃ )

k̃λ̃(ψ̃RTP + 2)

]
(C34)

yielding ψ̃RTP(λ̃) ∼ 2λ̃ when λ → ∞. Combining (C33) and
(C34) gives the promised inverse of ψ̃RTP(λ̃), as

λ̃ = ψ̃RTP(ψ̃RTP + 4)

(ψ̃RTP + 2)

[
1

2
+ 1

�L̃(ψ̃RTP)

]
(C35)

with

�L̃(ψ̃RTP) = ψ̃RTP

2
(ψ̃RTP + 4)

+ k̃λ̃(ψ̃RTP + 2)
1 + e−k̃λ̃L̃

1 − e−k̃λ̃L̃
, (C36)

where we used also (C24).
Recall from (C24) that k̃ is an imaginary number for −4 <

ψ̃RTP < 0. In this case, it is useful to rewrite

k̃λ̃

1 + e−k̃λ̃L̃

1 − e−k̃λ̃L̃
= |k̃λ̃| cot

( |k̃λ̃|L̃
2

)
. (C37)

With this result in hand, a careful analysis shows that �L̃(ψ )
has at least one zero for −2 < ψ < 0, at which point λ̃ di-
verges. This implies that ψ̃RTP(λ̃) has a horizontal tangent for
λ̃ → −∞. The location of the (largest) zero sets the smallest
possible value for ψ̃RTP(λ̃), which is achieved as λ̃ → −∞
[see Fig. 6(a)].

3. Scaling regime

It is instructive to consider two particles in a very large
system, L → ∞. The system has an associated scaling limit
whose behavior is shown in Fig 13.

Since the persistence length of the run-and-tumble motion
is much less than the system size, the particle motion on large
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FIG. 13. Regular part of the probability density function ε�(r)
from (C48) and (C49) scaled by the ring length L.

scales can be characterized as (athermal) diffusion, and the
particle explores the system on a timescale O(L2). Since ψRTP

is an inverse timescale, it is expected to be O(L−2). Moreover,
it follows from Eq. (C20) that typical values of wRTP

f are of
order L−1 in this regime. Physically, this small value arises
because of the small fraction of time that the particles spend
in contact, when L is large. Hence,

ψRTP(λ) = 2lv2
0

L + 2l
λ + O(λ2). (C38)

One then expects a scaling form as L → ∞:

ψRTP(λ) � L−2ϕ(λL), (C39)

which will be verified below. The corresponding form of the
rate function for wRTP

f is obtained from (14) as

I (w f ) � L−2I (w f L). (C40)

The natural dimensionless quantities in this regime are

� = λLv0

2
, (C41)

�(�) = τpL2

4l2
ψRTP(λ) (C42)

so that ϕ(λL) = 2l2�(�)/τp. The quantities �,�(�) have
same sign.

Since ψRTP is O(L−2), then Eq. (C35) shows that k =
O(L−1). At the lowest order in L−1 we then infer from
Eq. (C35) that for � > 0, then

� =
√

� tanh(
√

� ), (C43)

while for � < 0 we have

� = −
√

|�| tan(
√

|�|) (C44)

yielding lim�→−∞ �(�) = −π2/4.
Moreover, at leading order in L−1, it follows from

Eqs. (C25) and (C26) that

εαα
� (r) = εαα

� (r) = ε�(r)

= 1
2 A�(e−k�r + e−k�(L−r) ) (C45)

and from Eqs. (C31) and (C33) that

γ� = l

4L

�(�)

�
, (C46)

A� = 2γ�

l

1

1 + e−k�L
. (C47)

Using Eq. (C24) leads for � > 0 to

ε�(r) = 1

4L

�(�)

�

cosh
[√

�(�)
(
1 − 2r

L

)]
cosh (

√
�(�))

(C48)

and for � < 0 to

ε�(r) = 1

4L

�(�)

�

cos
[√|�(�)|(1 − 2r

L

)]
cos (

√|�(�)|) (C49)

which we plot in Fig. 13.
The physical picture emerging from Fig. 13 is as follows.

In a large system, a very weak bias λ = O(L−1) is sufficient
to change qualitatively the separation of the particles. The
resulting probability distributions are independent of particle
orientation but depend on the particle separation through the
scaling variable r/L. For � > 0 (corresponding to reduced
active work), the particles are more likely to approach each
other, which favors collisions. For � < 0 (enhanced work),
they are more likely to be far apart, suppressing collisions.
One sees from (C46) that the probability to find the particles
in contact vanishes as L−1; this holds throughout the scaling
regime λ = O(L−1).

4. Distribution over the infinite-time interval

The probability density vector Pλ which satisfies (C1)
and (C8) indicates the fraction of trajectories for which the
particles have final orientations αi and separation r in the λ

ensemble [52,68]. We are also interested in the fraction of time
spent with given orientations αi and separation r in the λ en-
semble, which we will denote P̂λ. We expect these probability
density functions to take the same form and respect the same
symmetries as their final time counterparts (C4), (C6), (C7),
so that

P̂αα
λ (r) = ε̂αα

λ (r) + γ̂ αα
λ δ(r) + γ̂ αα

λ δ(L − r), (C50)

P̂+−
λ (r) = ε̂+−(r) + γ̂ααδ(r), (C51)

P̂−+
λ (r) = ε̂−+(r) + γ̂ααδ(L − r), (C52)

in addition to being normalized accordingly to (C8). In order
to compute them, it is necessary to solve the eigenproblem
adjoint to (C1):

ψRTP(λ)Qλ = (
L† − λẇRTP

f I
)
Qλ, (C53)

where the same ψRTP(λ) is the largest eigenvalue. It then
follows that

P̂α1α2
λ (r) = Pα1α2

λ (r)Qα1α2
λ (r) (C54)

according to Ref. [68].
The matrix elements of L† can be read off from the back-

ward Fokker-Planck equation that corresponds to (C3):

Q̇α1α2 = − v0(α1 − α2)
∂

∂r
Qα1α2 − 2

∂

∂r
Qα1α2

∂

∂r
V

+ τ−1
p (Qα1α2 + Qα1α2 − 2Qα1α2 ) (C55)

and indicate that the eigenvector of this operator correspond-
ing to the eigenvalue 0, which is also Q0 in Eq. (C53), is
constant. Since bias introduces in Eq. (C53) terms which are
at least as regular as those in Eq. (C55), we expect Qα1α2

λ
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to remain smooth and continuous for λ �= 0. For particles
not in contact, Qα1α2

λ satisfies the same equations as Pα2α1
λ

[Eqs. (C21) and (C22)], with the replacement v0 → −v0. We
can then finally conclude

ε̂αα
λ (r) = Âλ

Aλ

εαα
λ (r)2, (C56)

ε̂αα
λ (r) = Âλ

Aλ

εαα
λ (r)εαα

λ (r), (C57)

γ̂ αα
λ = Âλ

Aλ

γ αα
λ εαα

λ (0+), (C58)

γ̂ αα
λ = Âλ

Aλ

γ αα
λ ε+−

λ (L−), (C59)

where Âλ is a normalization constant for P̂λ.

5. Polarization

From (31) and (32) we identify

νRTP
ave (λ) =

∫ L

0
[P̂++

λ (r) + P̂−−
λ (r)] dr (C60)

and (replacing P̂ with P)

νRTP
end (λ) =

∫ L

0
[P++

λ (r) + P−−
λ (r)] dr. (C61)

An exact expression of the polarization νRTP
end [Eq. (C61)] can

be computed by noting that

νRTP
end (λ) = 4γ αα

λ + 2
∫ L

0 εαα
λ (r) dr

4γ αα
λ + 2γ αα

λ + 2
∫ L

0

[
εαα
λ (r) + εαα

λ (r)
]

dr
,

(C62)
where the denominator is 1 by (C8) and we used that∫ L

0 [εαα
λ (r) − εαα

λ (r)]dr = 0. Moreover, Eq. (C27) yields
γ αα

λ = (ψ̃RTP + 2)γ αα
λ and Eqs. (C25) and (C26) yield

2
∫ L

0
εαα
λ (r) dr = (ψ̃RTP + 2)

∫ L

0
εαα
λ (r) dr, (C63)

therefore,

νRTP
end = 2

ψ̃RTP + 4
(C64)

whose dependence on λ̃ can then be obtained parametrically
via (C35).

An exact expression of the polarization νRTP
ave [Eq. (C60)] is

also available by writing

νRTP
ave (λ) = 4γ αα

λ εαα
λ (0+) + 2

∫ L
0 εαα

λ (r)2 dr

4γ αα
λ εαα

λ (0+) + 2γ αα
λ (ψ̃RTP + 2)ε+−

λ (L−) + 2
∫ L

0 εαα
λ (r)2 dr + 2

∫ L
0 εαα

λ (r)εαα
λ (r) dr

(C65)

which avoids the need to determine Âλ, and where we have
used (C56)–(C59). This allows νRTP

ave to be determined in full
via (C25), (C26), and (C33). It is easily verified that νRTP

end =
νRTP

ave = 1
2 for λ = 0, corresponding to a state where aligned

and antialigned states are equiprobable.

APPENDIX D: STATISTICS OF ORIENTATIONAL
ORDER PARAMETER(S)

This Appendix analyzes (controlled) ABPs in situations
where their orientations evolve independently of their posi-
tions. In these cases, the statistics of the order parameter ν can
be computed.

1. Mean-field analysis

We consider the dynamics of the particle orientations
alone, for the controlled system (37). We have U con

g =
−g/(NDr )

∑
i j cos(θi − θ j ) so the controlled equation of mo-

tion for the orientation is

θ̇i = −g/N
∑

j

sin(θi − θ j ) +
√

2Drξi. (D1)

Writing sin(θi − θ j ) = sin θi cos θ j − cos θi sin θ j , and using
(16) with ν = |ν|(cos ϕ, sin ϕ) yields (38) of the main text.

For N � 1, mean-field theory is valid because the individ-
ual θi relax much faster than the global ϕ, and fluctuations of ν

are also negligible. Without loss of generality, we take ϕ = 0,

hence, it is consistent to set

|ν| = 〈cos θi〉con (D2)

in Eq. (38). Treating this quantity as a fixed number, the steady
state of the system obeys a Boltzmann distribution where each
θi is independent with distribution

pcon
|ν| (θi ) ∝ exp

(
2g|ν|
Dr

cos θi

)
, (D3)

where the constant of proportionality is fixed by normaliza-
tion. Combining (D2) and (D3) leads to a self-consistency
relationship

|ν| =
∫

pcon
|ν| (θ ) cos θ dθ. (D4)

The integral can be expressed in terms of a Bessel function.
However, the relevant question is for which values of g non-
trivial solutions exist (excluding |ν| = 0). For that purpose,
one may expand for small values of the parameter 2g|ν|/Dr

which yields 〈cos θi〉con = (g/Dr )|ν| + O(|ν|3). The correc-
tion term is negative and hence the nontrivial (ferromagnetic)
solution appears for

g > Dr . (D5)

To analyze the paramagnetic phase we have by the central
theorem of Sec. III B that for g = 0 then p0(ν) ∝ e−N |ν|2 . The
Boltzmann distribution for the steady state of the controlled
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system is obtained by multiplying by e−U con
g , yielding

pg(ν) ∝ exp
[−N |ν|2(1 − gD−1

r

)]
(D6)

from which we obtain Eq. (B3). Consistent with the previous
argument, that fluctuation diverges at the critical point g =
Dr . For larger g, estimation of p0 by the central limit theorem
is too simplistic and a more detailed analysis is required, for
example, as in Eqs. (D2) and (D3).

2. Large deviations of the time-averaged order parameter

In this section we consider large deviations of the time-
averaged (vectorial) order parameter

ντ = 1

τ

∫ τ

0
ν(t )dt . (D7)

Recall that ν(t ) is defined in Eq. (16) as a simple average
of individual orientations which evolve independently by (2).
Hence, the statistics of ντ can be analyzed exactly. As τ → ∞
there is a large-deviation principle

p(ντ ) ∼ exp[−τNJ (|ντ |)], (D8)

where J is the rate function, which only depends on the
modulus of ντ , by symmetry. Note that the function J is
distinct from J1 in Eq. (40), which describes large deviations
of the time-integrated modulus of ν. See, however, (D22)
below. There is an associated SCGF

ψOP(h) = lim
τ→∞

1

Nτ
ln 〈exp(−τNh · ντ )〉, (D9)

where h = |h|; the right hand side only depends on the mod-
ulus of h, by symmetry. There is a corresponding biased
ensemble of trajectories, in which a generic observable A has
average value

〈A〉h = 〈A exp(−τNh · ντ )〉
〈exp(−τNh · ντ )〉 . (D10)

Since the rotors are independent under the ABP dynamics,
the expectation value in Eq. (D9) reduces to a product of
expectation values for single rotors. Hence, ψOP solves the
eigenvalue problem

ψOP(h)Fh(θ ) = DrF ′′
h (θ ) − hFh(θ ) cos θ. (D11)

As noted in Ref. [35], this problem is related to Mathieu’s
equation. Let θ̃ = θ/2 and define h-dependent quantities a =
−4ψOP(h)/Dr and q = 2h/Dr . Defining also F̃ (θ̃ ) = Fh(2θ̃ )
we have

F̃ ′′(θ̃ ) + (a − 2q cos 2θ̃ )F̃ (θ̃ ) = 0. (D12)

We recognize Eq. (D12) as Mathieu’s differential equation
[87]. For any real number q there is a countable infinity of
possible values of a and associated solutions F̃ . We are inter-
ested in functions Fh that are even and 2π periodic. Hence, F̃
must be π periodic in θ̃ . We therefore introduce M(0)(θ̃ , q)
which is the zeroth even and π -periodic Mathieu function and

a(0)
M(q) its characteristic value [35], such that

ψOP(h) = −Dr

4
a(0)
M(2h/Dr ), (D13)

Fh(θ ) = M(0)

(
θ

2
,

2h

Dr

)
. (D14)

Hence, by Legendre transform the rate function in Eq. (D8) is

J (ν) = sup
h

[−hν − ψOP(h)]. (D15)

This result is exact for all N and all ν.
To obtain additional physical insight, we obtain the

quadratic behavior of the rate function at small ν. This re-
quires that we solve (D12) for small q, which is a computation
in perturbation theory [88]. Since F̃ is even and π periodic
in θ̃ it can be expanded as F̃ (θ̃ ) = 1 + ∑∞

n=1 βn cos 2nθ̃ . The
coefficients βn and the eigenvalue a can then be expanded in
powers of q. To leading order,

a = −q2/2 + O(q4), β1 = −q/2 + O(q3) (D16)

and βn = O(qn) for n � 2. Hence, by (D13) and (D14)

ψOP(h) = 1

2Dr
h2 + O(h4), (D17)

and so for small ν,

J (ν) = 1
2 Drν

2 + O(ν4). (D18)

The corresponding eigenfunction is

Fh(θ ) = 1 − h

Dr
cos θ + O(h2). (D19)

Hence, the optimal control potential (for this single orienta-
tion vector) is U OP

opt = −2 lnFh, so

U OP
opt (θ ) = 2h

Dr
cos θ + O(h2). (D20)

Recall, we are considering here large deviations where the or-
der parameter is aligned parallel (or antiparallel) to the x axis.
For h > 0, the control potential acts to align the orientation
vectors antiparallel to this axis, as expected from (D10).

3. Time-averaged modulus of the order parameter

The discussion of the large-deviation principle (D8) of
the previous section is useful as a way to characterize the
large-deviation principle (40) of the main text. In this case the
relevant SCGF is

ψ1(λ) = lim
τ→∞

1

Nτ
ln 〈exp(−τNλντ )〉 (D21)

and J1(ν) = supλ[−λν − ψ1(λ)]. In contrast to the previous
case, this problem cannot (to our knowledge) be solved ex-
actly for finite N . However, as N → ∞ the problem is of
mean-field type. In this case, the intuitive result is that the
large-deviation mechanism for ντ should be the same as that
of ντ , so that

lim
N→∞

J1(ν) = J (ν) (D22)

as illustrated by Fig. 14(a).
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FIG. 14. (a), (b) Rate function of the time-averaged modulus of
the order parameter J1(ν̄ ) computed from cloning simulations of
rotors (parameter values: nc = 103, tmax = 103) (a) and compared
to the rate function of the time-averaged order parameter J (ν̄ ) [see
Eq. (D15)].

We note from this figure that J has its zero at the origin
〈ντ 〉 = 0. On the other hand, (18) shows that the unique zero
of J1 is at 〈ντ 〉 = √

π/(4N ) and in fact J1 increases rapidly
for smaller values of ντ . Hence, for any given N , there is a
region between 0 and 〈ντ 〉 where J1 deviates strongly from
J . However, this region vanishes as N → ∞ so (D22) holds
for all ν > 0.

Moreover, Appendix F in Ref. [37] shows that

ψ̃1(k) = lim
τ→∞

1

τ
ln

〈
e−k

∫ τ

0

√
N |ν(t )| dt

〉
(D23)

is a well-defined smooth function for N � 1. Therefore, with
Nψ1(λ) = ψ̃1(

√
Nλ), we obtain

NJ1(ν) � B(
√

Nν −
√

π/4)2 (D24)

in the regime where
√

Nν = O(1), and where B is a constant
independent of N , as illustrated by Fig. 14(b).

The next step is to outline a derivation of (D22), which also
yields the optimally controlled dynamics for this problem.
The SCGF can be obtained by solving an eigenproblem

Nψ1(λ)Fpol
λ = Dr

∑
i

∂2

∂θ2
i

Fpol
λ − λN |ν|Fpol

λ , (D25)

where Fpol
λ = Fpol

λ (θ1, . . . , θN ) depends on all angles. Since
this is a mean-field problem, the solution for large N can be
approximated as

Fpol
λ = f (ν)

∏
i

ζλ(θi|ν), (D26)

where the orientation vectors interact only through their av-
erage, which is ν. Note also |ν| = N−1 ∑

i cos(θi − ϕ) where
ϕ is the angle between ν and the x axis. We assume that ζ is
normalized as

∫
ζ (θ |ν)2dθ = 1. The function f is assumed to

depend only on |ν|, and for large N it is sharply peaked in this
variable, at |ν| = ν∗. In order that Fpol is also sharply peaked
at ν∗, we require a self-consistency condition∫

cos(θ − ϕ)ζ (θ |ν)2dθ = ν∗. (D27)

The eigenproblem (D25) is Hermitian (self-adjoint) so
there is a variational (Rayleigh-Ritz) formula for its largest

eigenvalue. Using Fpol as ansatz yields

ψ1(λ) � −λν∗ − 1

2πN

∑
i

∫
�ζ (θi, ν

∗)dϕ, (D28)

where we used (D27) as well as ν∗ = ν∗(cos ϕ, sin ϕ) and

�ζ (θ, ν) = −
∫

Drζ (θ |ν)
∂2

∂θ2
ζ (θ |ν)dθi. (D29)

We have neglected terms in Eq. (D28) which arise from the
action of the derivatives on ν; these are negligible as N → ∞.
In fact, the mean-field structure of the problem means that
the bound (D28) will become an equality as N → ∞, if the
optimal choice is made for ζ .

It is convenient to work in terms of the rate func-
tion, using J1(ν) = supλ[−λν − ψ1(λ)] to see that J1(ν) �
infζ �ζ (θ, ν) where the maximization is again subject to
(D27). Implementing this constraint and the normalization
constraint on ζ by Lagrange multipliers μ1, μ2, we find

Dr
∂2ζ

∂θ2
+ [μ1 − μ2 cos(θ − ϕ)]ζ = 0. (D30)

Hence, we have recovered Mathieu’s equation. Proceeding
similar to Appendix D 2 and using that extremization of the
Lagrange multipler μ2 yields a maximum in this case, one
obtains

J1(ν) � sup
μ2

[−μ2ν − ψOP(μ2)]. (D31)

The notation � indicates that this relation becomes exact as
N → ∞. Equation (D22) follows on comparing with (D15).
It follows that the optimal control potential for the large-
deviation principle of (40) and (D21) is

U pol
con (θ1, . . . , θN ) = −2

∑
i

lnFλ(θi − ϕ), (D32)

where the notation Fλ indicates the function defined in
Eq. (D14), evaluated at h = λ. This is indeed a mean-field-
type interaction among orientations. By the same argument as
(D20), it reduces for small λ to

U pol
con (θ1, . . . , θN ) � 2λ

NDr

∑
i j

cos(θi − θ j ). (D33)

This is nothing but U con
g from (37) with g = −2λ. The result

is that for small values of ν, Eq. (37) is an optimal control
potential for large deviations of the orientation.

4. Expansion of ω

This section derives Equ. (57) of the main text. We assume
that ω(ρ̄, P) can be inferred from the ensemble of trajectories
biased with respect to the polarization P [Eq. (56)]:

ω(ρ̄, P) = 〈ρ̄wτ e−h(P)·τN ν̄τ 〉
〈e−h(P)·τN ν̄τ 〉

∣∣∣∣
h(P),〈ν̄τ 〉h(P)=P

, (D34)

where we have used the averaged polarization from Eq. (D7).
We have in the limit h(P) → 0,

〈wτ e−h(P)·τN ν̄τ 〉
= 〈wτ 〉 + 1

4τ 2N2|h(P)|2〈wτ |ν̄τ |2〉, (D35)

〈e−h(P)·τN ν̄τ 〉 = 1 + 1
4τ 2N2|h(P)|2〈|ν̄τ |2〉 (D36)
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up to O[h(P)2] terms and where we have discarded linear
terms in h(P) by symmetry, therefore,

ρ̄−1ω(ρ̄, P) = 〈wτ 〉 + 1
4τ 2N2|h(P)|2 Cov(wτ , |ν̄τ |2) (D37)

linking ω(ρ̄, P) and the covariance of the active work and the
squared average polarization.

We note that

〈ν̄τ 〉h(P) = − 1
2τNh(P) Var(ν̄τ ) (D38)

using 〈ν̄τ 〉 = 0 in the limit τ → ∞ such that Var(ν̄τ ) =
〈|ν̄τ |2〉, and

〈|ν̄τ |2〉 = 2

DrτN

[
1 − 1

Drτ
(1 − e−Drτ )

]

= 2

DrτN
, τ → ∞ (D39)

using 〈u(θi(t )) · u(θ j (t ′))〉 = δi je−Dr |t−t ′| from Eq. (2), there-
fore, with 〈ν̄τ 〉h(P) = P we may write

h(P) = − 2

τN Var(ν̄τ )
P =

τ→∞ −DrP, (D40)

linking the biasing parameter and the polarization.
We then have

ρ̄−1ω(ρ̄, P) − 〈wτ 〉 = |P|2 1

Var(ν̄τ )2
Cov(wτ , |ν̄τ |2)

= 1

4
|P|2τ 2 N2 D2

r Cov(wτ , |ν̄τ |2),

τ → ∞ (D41)

at leading order in |P|2.

APPENDIX E: FLUCTUATIONS OF THE ACTIVE WORK
IN THE HYDRODYNAMIC THEORY

This Appendix describes density fluctuations of ABPs at
hydrodynamic level, including large deviations. We follow
Ref. [60], which draws on earlier results including [58,74].
At hydrodynamic level, we are restricted to small biasing
fields s = O(1/L2). In this case, the (fast) polarization field
is unaffected by the bias and can be safely integrated out. At
the level of (46), this leads to renormalization of the diffusion
constant Dc but we do not distinguish the bare and renormal-
ized values of Dc, for simplicity. Since the polarization has
been integrated away, this analysis of density fluctuations is
restricted to states with 〈P〉 = 0, but this is sufficient to cover
homogeneous phases for s > 0 (small enough that the system
remains homogeneous) and for s < 0 (small enough that there
is no collective motion).

1. Quadratic theory

As in Ref. [60] (Sec. 5.1 and Appendix B), we consider a
perturbation around the homogeneous profile

ρ(r, t ) = ρ̄ + δρ(r, t ) (E1)

with δρ � ρ̄ and
∫

δρ(r, t )dr = 0. Since we consider an
isotropic system P = 0, we define

ω̄0 = ω(ρ̄, P = 0), (E2)

ω̄′′
0 = ∂2

∂ρ2
ω(ρ̄, P = 0) (E3)

so that we can Taylor expand the active work over ρ:

Nτwτ = L2τ ω̄0 + 1

2
ω̄′′

0

∫
[0,L]2

∫ τ

0
(δρ)2 d2r dt

+ O(δρ3). (E4)

At the consistent level of expansion, the stochastic equation
for the density (46) and (47) is

∂

∂t
δρ = Dc(ρ̄)∇2δρ −

√
2σ (ρ̄ )∇ · η. (E5)

We introduce the Fourier modes of the density

ρ̃q = 1

L2

∫
[0,L]2

δρ(r)e−iq·r dr (E6)

so that

δρ =
∑

q �=(0,0)

ρ̃qeiq·r. (E7)

Hence,

Nτwτ = L2τ ω̄0 + L2ω̄′′
0

∑
qx�0, qy

q �=(0, 0)

∫ τ

0
ρ̃qρ̃−q dt, (E8)

where the sum runs over nonzero modes q = 2π (nx, ny)/L,
with qx � 0, and where we have used∫

[0,L]2
δρ2 d2r = L2

∑
q �=(0,0)

ρ̃qρ̃−q

= 2L2
∑

qx�0, qy

q �=(0, 0)

ρ̃qρ̃−q (E9)

according to Parseval’s theorem. Since the theory is defined
on the mesoscopic scale, sums over q are restricted to |q| < �

where � is an upper cutoff of order unity [to be precise, it is
of order |�r|−1/d , for consistency with (44)].

From Eqs. (E5) and (E6), we derive the stochastic equation
satisfied by the nonzero Fourier modes

∂

∂t
ρ̃q = −D(ρ̄)|q|2ρ̃q +

√
2σ (ρ̄)|q|2η̃q, (E10)

where the longitudinal part of the noise term η̃q is a complex
Gaussian white noise with zero mean and variance

〈η̃q(t )η̃∗
q (t ′)〉 = 1

L4|q|2

×
∫∫

[0,L]2
〈[(−iq) · η(t )][(iq) · η(t ′)]〉 d2r d2r′

= δ(t − t ′), (E11)
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and also 〈Re(η̃q(t ))Im(η̃q(t ′))〉 = 0. Noises with different wave vectors q are independent. The key point is that (E10) is diagonal
in q so every wave vector can be analyzed separately.

2. Biased ensemble of trajectories

The next step is to consider a biased ensemble defined by the (linear) equations of motion (E10) and the reweighting factor
e−sτNwτ , where the exponential factor (E8) is quadratic (and diagonal) in the density fluctuations.

Following Ref. [60] (Appendix B), we consider the complex Ornstein-Uhlenbeck process

z = −ζ z +
√

2γ η, (E12)

where η is a complex Gaussian white noise with the same statistics as η̃q. For a biased ensemble with exponential biasing factor
of e−sKτ where Kτ = α

∫ τ

0 |z(t )|2dt , the scaled cumulant generating function for Kτ can be computed. Identifying (z, ζ , γ , α)
with (ρq, Dc(ρ̄ )q2, σ (ρ̄ )q2, ω̄′′

0 ), the resulting SCGF for wτ is obtained by summing over the modes, to find

ψ (s) = lim
τ→∞

1

Nτ
ln〈e−sNτwτ 〉

= −s〈wτ 〉 − 1

N

∑
qx�0, qy

q �=(0, 0)

(√
Dc(ρ̄)2|q|4 + 2sω̄′′

0σ (ρ̄)|q|2 − Dc(ρ̄)|q|2 − sω̄′′
0σ (ρ̄)

Dc(ρ̄)

)
(E13)

consistent with [58,74]. We emphasize that this result is valid
only on the hydrodynamic scale, which means very small bias
s = O(1/L2).

Several results are available from this formula. We first
compute

−w′(s) = ψ ′′(s) = [ω̄′′
0σ (ρ̄)]2

D(ρ̄)3

1

N

∑
qx�0, qy

q �=(0, 0)

1

q2
(E14)

which is related to the variance of the active work from
Eq. (20). The sum in this last expression can be approximated
as

∑
qx�0, qy

q �=(0, 0)

1

q2
� L2

(2π )2

∫ �

2π/L

πq dq

q2

= L2

4π
[ln L + O(1)], (E15)

where � is the upper cutoff on q. Hence, (61) follows, by
combining these results with (20) and (53). The origin of this

diverging variance is the presence of a slow (hydrodynamic)
timescale, diverging as L2.

The second result that is available from (E13) is that the
argument of the square root will become negative if sω̄′′

0 is
sufficiently negative, indicating that the system becomes inho-
mogeneous. The instability is in the lowest mode, which has
|q| = 2π/L. Noting that ω̄′′

0 < 0 we obtain Eq. (62), which
is the point at which the system becomes unstable to phase
separation.

Finally, observe that since ψ in Eq. (E13) is the scaled
cumulant generating function for squared density fluctuations,
the structure factor of the biased ensemble can also be ob-
tained by taking a derivative, leading to

〈|ρq|2〉s = σ (ρ̄)|q|2√
Dc(ρ̄ )2|q|4 + 2sω̄′′

0σ (ρ̄)|q|2 (E16)

similar to [74]. Observe that the limiting behavior of this
function at q → 0 is different according to whether sω̄′′

0 is
zero or positive. In the latter case then 〈|ρq|2〉s → 0 as q → 0,
corresponding to hyperuniformity. Hence, (63) follows. If
sω̄′′

0 < 0, then it is not permissible to take q → 0 in Eq. (E16),
as the argument of the square root would be negative at small
q, which signals phase separation, as noted above.
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