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Non-Gaussian noise without memory in active matter
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Modeling the dynamics of an individual active particle invariably involves an isotropic noisy self-propulsion
component, in the form of run-and-tumble motion or variations around it. This nonequilibrium source of
noise is neither white—there is persistence—nor Gaussian. While emerging collective behavior in active
matter has hitherto been attributed to the persistent ingredient, we focus on the non-Gaussian ingredient of
self-propulsion. We show that by itself, that is, without invoking any memory effect, it is able to generate particle
accumulation close to boundaries and effective attraction between otherwise repulsive particles, a mechanism
which generically leads to motility-induced phase separation in active matter.
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I. INTRODUCTION

The Brownian dynamics of particles interacting via con-
servative forces inevitably leads, whatever the level of fric-
tion, to a steady-state distribution given by the celebrated
Gibbs-Boltzmann distribution. The key property allowing this
statement to be made without having to solve for the dynamics
is detailed balance, a signature of time reversibility. Granted,
whatever the specifics of time reversal, it is synonymous with
equilibrium behavior and it comes closely associated with a
number of well-known consequences, such as the fluctuation-
dissipation theorem [1] or a vanishing entropy production. In
active matter, by contrast, the interest is in particles whose in-
dividual motion, while isotropic, relies on a net dissipation of
energy. Such systems leave the realm of equilibrium physics,
and the the possibility exists for a wealth of phenomena that
our equilibrium intuition often fails to grasp [2–11].

Focusing on the subclass of active systems made of
isotropic particles, a variety of microscopic dynamics have
been proposed to model individual motion. Run-and-tumble
particles (RTPs), for which directed motion is interspersed
with random directional changes, are among the most studied
of models and have been used to model swimming bacte-
ria [12,13]. Active Brownian particles (ABPs), in which a
Gaussian white noise drives directional diffusion at an oth-
erwise constant tangential velocity, provide a simple model
for self-propelled colloids [5,11,14–18]. In such models, in-
stead of a standard equilibrium Gaussian white noise mim-
icking the action of the solvent on the particles, one has
to deal with a random force that is neither Gaussian nor
white.

In an effort to further simplify such active particle models,
without however giving up the gist of nonequilibrium activity,
it has been argued that the main nonequilibrium ingredient
is the existence of some memory, also termed persistence, in
the random self-propulsion force. This has led, for instance,
to a series of works on active Ornstein-Uhlenbeck particles

(AOUPs) [19–25], in which a Gaussian noise characterized
by an exponentially decaying memory kernel is used. (See
also [26] for a kinetic Monte Carlo version of AOUPs.) In
the latter case, of course, no matching memory kernel in the
viscous damping is introduced; otherwise one would revert to
equilibrium physics as described by Kubo [27] in his works on
generalized Langevin equations.1 Active Ornstein-Uhlenbeck
particles have been used, for instance, to model the dynamics
of tracers in living systems [29–31].

Our purpose in this work is to investigate what physical
characteristics the non-Gaussian nature of the active fluctua-
tions contributes. We will thus take the opposite stance and
forget about any type of memory, thereby working with a
non-Gaussian but white noise in our equations of motion for
the individual particles. In practice, we consider particles ex-
periencing a viscous drag, a random force, and either external
or interparticle forces:

m
dvi

dt
= −γ vi + Fi + γ ηi . (1)

Here m is the mass of the particles, which we send to zero
to describe an overdamped limit, but keep finite in our simu-
lations for practical purposes explained below. We consider
a non-Gaussian white noise η, known as a filtered Poisson
process with a Dirac kernel: Over a given time interval of
duration tobs, a number n of times {t1, . . . , tn} is drawn at
random from a Poisson distribution with average νtobs. These
times are themselves random variables drawn from a uniform
distribution over [0, tobs]. At each time ti a random vector �i

is independently drawn from some specified jump distribution

1Unless, of course, there is some imbalance between force cor-
relations and viscous damping characterized by different memory
kernels [28].
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p(�) so that

η(t ) =
n∑

i=1

�iδ(t − ti ). (2)

Interestingly, our main message is that such non-Gaussian
dynamics exhibits much of the standard active matter be-
haviors frequently associated with persistent noises, such as
accumulation close to boundaries.

Langevin equations driven by a non-Gaussian white noise
have been considered before. An early instance can be found
in signal processing [32], but other developments have been
witnessed in mechanical and structural engineering [33–38],
including processes involving multiplicative noise, or even
more recently in finance [39,40]. From a physics perspective,
some properties of the harmonic oscillator evolving under a
non-Gaussian white noise have been solved exactly [41,42].
More complex force fields or noises have been investigated
earlier [37,43,44]. More recently, it was shown how to prop-
erly formulate the ideas of stochastic thermodynamics in
the presence of non-Gaussian white noise [45] and actual
physical realizations have been brought forth [46–49]. These
few references do not by any means make up an exhaustive
review. An important feature that is absent from all these
works, however, is that no collective effects (between various
particles evolving with such modified Langevin dynamics) are
considered.

Before we consider interacting particle systems, we first
discuss in Sec. II the properties of the microscopic dynamics
that we endow our particles with. The specifics of a non-
Gaussian but white noise are described there. We focus,
analytically and numerically, on a single particle evolving
in an external potential, considering in particular a particle
confined in a harmonic trap and a particle in the vicinity of
a wall. This study of one-body problems is designed to lay
the foundation for the many-particle case that we consider in
Sec. III. We first establish that, as for persistent active parti-
cles, quorum-sensing interactions that make motility decrease
at high density lead to a motility-induced phase separation
(MIPS) [3,7,50]. Simulations of large bidimensional systems
of non-Gaussian particles interacting via pairwise forces are
numerically beyond what we can achieve and we thus could
not establish MIPS in this case [5,16,51]. We nevertheless
show that, as for ABPs, RTPs, or AOUPs, purely repulsive
forces induce an effective attraction between the particles.
To interpret what we observe, we describe the dynamics of
collective modes and we build an evolution equation for the
local particle density à la Dean and Kawasaki [52,53]. We
use that equation to construct the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of correlations [54] and
we derive a low-density expansion of correlation functions.

II. SINGLE-PARTICLE DYNAMICS

A. Modified Langevin dynamics

In order to pose our problem with care, we begin with the
single-particle version of the dynamics (1)

m
dv
dt

= −γ v + F + γ η, (3)

where F = −∂rU is taken to be a conservative force deriving
from the potential U . The factor γ in front of η is here for
practical reasons, as we prefer thinking of the noise η as a
fluctuating velocity imparted to the particle.

Exploiting the definition of the non-Gaussian noise η in
Eq. (2), the generic average brackets 〈·〉, referring to an
average over the noise realizations, thus denote an average
with respect to n, to the ti’s, and to the �i’s. The generating
functional of η is

Z[h] =
〈
exp

(∫
dt h · η

)〉
= exp

[
ν

∫
dt (〈e�·h(t )〉p − 1)

]
,

(4)

where 〈·〉p denotes an average with respect to p(�) only. A
key property is that the nth-order cumulant of η is nonzero
only when the arguments are at equal times,

〈ηα1 (t1) · · · ηαn (tn)〉c = κ (n)
α1,...,αn

δ(t1 − t2) · · · δ(tn−1 − tn),
(5)

where κ (n)
α1,...,αn

= ν〈	α1 · · · 	αn〉p. The αj ’s denote arbitrary
space directions αi = 1, . . . , d, where d is the number of
spatial dimensions. In the following, we consider that only the
even cumulants of the noise are nonzero.

The celebrated Gaussian white noise is recovered in the
scaling limit ν → ∞ and 〈	α	β〉p → 0, with the effective
diffusion constant γ −1T = (2d )−1ν〈�2〉p being fixed. In the
latter scaling limit, the dynamics is equilibrium and, for
instance, the fluctuation-dissipation theorem follows. For the
purpose of comparison to equilibrium, we will stick to the
notation T = γ (2d )−1ν〈�2〉p even if out of equilibrium. One
must keep in mind that T then loses its thermodynamic mean-
ing of a temperature. However, a curiosity of Eq. (3) is that it
nevertheless preserves some sort of an equipartition theorem,
according to which 〈mv2/2〉 = dT /2 and 〈r · ∂rU 〉 = dT .

Just as its Gaussian counterpart, Eq. (3) can also be
considered in the overdamped limit. In that limit, somewhat
unphysical features emerge that only m �= 0 helps regularize.
Considering the overdamped version

γ v = F + γ η, (6)

one can see that after a given pulse the dynamics is the deter-
ministic gradient descent. Then, after a typical time ν−1, an
instantaneous pulse occurs again, with an infinite amplitude.
For finite forces F, the infinite amplitude will always win over,
and this leads to the particle jumping instantaneously from
one place to another, possibly flying over existing obstacles.
In practice, this makes simulations particularly difficult in that
limit. In the Gaussian limit, such events become rarer due
to the vanishing of the hopping amplitude, but it is a well-
known fact that the Brownian trajectory is nondifferentiable
and that sampling a Gaussian white noise too can induce,
however rarely, unphysical displacements. We will return
to these caveats when considering interacting particles in
Sec. III.

Using the Kramers-Moyal expansion, the master equation
for the probability P (x, t ) that the particle lies at r(t ) = x
reads

∂tP = γ −1∂x · (FP ) + ∂α1Dα1P, (7)
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where we have used the notation

Dα1 =
∑
n�2

(−1)nκ (n)
α1,...,αn

n!

∂n−1

∂xα2 · · · ∂xαn

, (8)

which generalizes the diffusive gradient γ −1T ∂x [55–57]. A
somewhat more formal way of defining this operator is

Dx = ν
p̃(i∂x) − 1

i∂x
, (9)

where p̃(k) = ∫
�
e−ik·�p(�). The last term in (7) also stems

from the more intuitive master equation balance

∂α1Dα1P = ν

∫
�

p(�)[P (x − �, t ) − P (x, t )]. (10)

In what follows, we consider that η is a symmetric process
where the jump distribution is isotropic.

B. Specific jump distributions

For the sake of clarity, we consider a specific jump distri-
bution given by

p(�) = Ndα (	/a)α−1e−	/a, (11)

where d + α > 1 and 	 = |�|. The normalization constant
reads

Ndα = [�da
d�(α + d − 1)]−1. (12)

The solid angle in d dimension �d = 2πd/2/�(d/2) is written
here in terms of the Euler Gamma function �. Such distribu-
tions typically emerge when considering that the jump length
is the sum of α Poisson processes. We recover an exponential
distribution for α = 1, and the distribution gets all the more
peaked around its average value as α increases. For such a
distribution 〈�2〉p = a2(d + α)(d + α − 1), so the diffusion
constant D = γ −1T = ν〈�2〉p/2d is of order νa2.

To obtain the corresponding form of the operator Dx in
Eq. (9), we use the following expressions of the spatial Fourier
transforms for the isotropic distributions (11):

p̃(q ) =
∫ ∞

−∞
eiq	p(	)d	

= (1 − iaq )α + (1 + iaq )α

2[1 + (aq )2]α
for d = 1,

p̃(q ) = 2π

∫ ∞

0
	J0(q	)p(	)d	

= 2F1

[
1 + α

2
,

2 + α

2
; 1; −(aq )2

]
for d = 2,

p̃(q ) = 4π

∫ ∞

0

	

q
sin(q	)p(	)d	

= sin[(1 + α) arctan(aq )]

aq(1 + α)[1 + (aq )2](1+α)/2
for d = 3,

(13)

where J0 and 2F1 denote the Bessel function of the first
kind and the Gauss hypergeometric function, respectively. We
report in Table I the explicit form of Dx for some specific
values of d and α.

TABLE I. Explicit form of the operator ∂x · Dx/νa2 in (9), ex-
pressed in terms of L0 = 1 − a2∂2

x for the jump distribution (11). We
consider some specific values of the spatial dimension d and of the
jump parameter α.

∂x · Dx

νa2
d = 1 d = 2 d = 3

α = 0
L

−1/2
0 − 1

a2

∂2
x

L0

α = 1
∂2

x

L0

1

a2
(L−3/2

0 − 1)
L0 + 1

L2
0

∂2
x

α = 2
2 + L0

L2
0

∂2
x

1

a2

(
3 − L0

2L
5/2
0

− 1

)
3L0(L0 + 1) + 4

3L3
0

∂2
x

C. Harmonic trap

It is a well-documented fact, as reviewed by Solon et al.
[58], that for both RTPs and ABPs evolving in a quadratic
potential, there can be an overshoot of the probability to find
the particle at a finite distance from the center of the trap.
An active particle with a finite propulsive force Fp indeed
has a horizon rh = |Fp|/k for a trapping force Ftrap(r) = −kr.
When the time taken by the particle to cross the trap is much
shorter than the persistence time of the propulsive force, the
particle spends most of its time at the horizon. The density
profile in such cases is not that of a simple decay from a
peak at the center of the potential well, but it is actually
peaked at r � rh. Interestingly, this is not observed in AOUPs
where the stationary distribution remains a Gaussian [59]
(an equilibrium one at that [22]). Thus, a natural question is
whether non-Gaussian white noise alone is responsible for
a nonmonotonic density profile at odds with the intuition
gained from equilibrium. The answer is no, but there are some
shared features. For non-Gaussian but white noise, similar
calculations have been done in the past, but these do not really
apply to the modeling of active particles. For the example
worked out in [42], a Lévy-type distribution with exponent
α is obtained for the position probability distribution function
(PDF) of a particle in one space dimension. This holds for a
non-Gaussian white noise that is a symmetric α-stable Lévy
process, which is rather far from the sort of non-Gaussian
noise that is relevant to active particles. In the latter, a typical
hopping scale a exists, as for instance in the jump distributions
discussed in Sec. II B. For such jump distributions, it is actu-
ally possible to find the Fourier transform of the position PDF
of a particle in a harmonic well V (r) = kr2/2 with stiffness k.
The results are summarized in Table II. They show the Fourier
transform of the steady-state distribution Pss(r), defined by

P̃ss(q) = lim
t→∞〈eiq·r(t )〉. (14)

Introducing the response function χ (t ) = �(t )e−t/τr , with
τr = γ /k, we may rewrite the Langevin equation (6) for F =
−kr as

r(t ) =
∫ t

−∞
χ (t − u)η(u)du. (15)
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Therefore, using a cumulant expansion in Eq. (14), we
arrive at

ln P̃ss(q) = lim
t→∞

∞∑
n=1

in

n!
qα1 · · · qαn

×
∫ t

−∞
〈ηα1 (t1) · · · ηαn

(tn)〉c

× χ (t − t1) · · · χ (t − tn)dt1 · · · dtn, (16)

where the αi indices are summed over and run from 1 to d.
Substituting the expression for the noise cumulants (5) into
Eq. (16), we obtain

ln P̃ss(q) = ν

∫ ∞

0
du(p̃(qχ (u)) − 1). (17)

Finally, using the change of variable u → s = χ (u), the
steady profile can be expressed as

ln P̃ss(q) = ντr

∫ 1

0

ds

s
(p̃(qs) − 1). (18)

One could directly check that Eq. (18) is indeed a solution of
Eq. (7) for F = −kr. We report in Table II explicit analytic
expressions for some specific values of α and d. In d = 2, the
steady-state distribution can always be explicitly computed as

ln P̃ss(q) = −ντr (1 + α)(2 + α)(aq )2

8

× 4F3

[
1, 1,

3 + α

2
,

4 + α

2
; 2, 2, 2; −(aq )2

]
.

(19)

The corresponding distributions in real space show interesting
features like exponential tails (see [60] for a more mathemat-
ical discussion). The discussion depends on the value of the
ντr combination, whose physical meaning is clear: The higher
this number is the more frequently the white noise has stricken
during the typical relaxation times within the well.

When the relaxation within the well does not have time
to proceed, for ντr � 1, the center of the well becomes
underpopulated with respect to a Gaussian and the distribution
actually becomes convex at the origin where it develops a
cusp along with fat tails. For instance, for α = 1, in one space
dimension, an explicit form of Pss can be found,

Pss(x) ∼
( |x|

a

)(ντr−1)/2

K(ντr−1)/2

( |x|
a

)
, (20)

where Kn is the modified Bessel function of the second kind.
A cusp does develop at the origin when ντr < 2. This regime
mirrors that in which RTPs or ABPs exhibit a probability
overshoot away from the center of the well; small ν means
large persistence time. A non-Gaussian white noise alone,
however, is not sufficient to produce an overshoot of the
position PDF a finite distance away from the bottom of the
harmonic well for the choices of p(	) that we have tested.
This is probably due to the absence of any mechanism to
select a specific length scale in our non-Gaussian models, as
opposed to ABPs and RTPs where the depletion of the center
of the well leads to an accumulation at the horizon rh. Here
the depletion instead leads to fat tails.

TABLE II. Space Fourier transform of the steady density profile
in Eq. (18) for a α-� jump distribution in Eq. (11). We take specific
values of the spatial dimension d and the parameter α.

P̃ss d = 1 d = 3

α = 0
1

[1 + (qa)2]ντr /2

α = 1
1

[1 + (qa)2]ντr /2

exp
(− ντr

2
(qa)2

1+(qa)2

)
[1 + (qa)2]ντr /2

α = 2
exp

(−ντr
(qa)2

1+(qa)2

)
[1 + (qa)2]ντr /2

exp
(− ντr

6
(qa)2[7+5(qa)2]

[1+(qa)2]2

)
[1 + (qa)2]ντr /2

In the opposite regime of small a at fixed ντra
2, and

hence ντr 	 1, one recovers the Gaussian behavior P̃SS(q) =
e−T q2/(2k). This regime mirrors ABPs and RTPs which also
behave as equilibrium particles in the limit of vanishing
persistence [58]. Finally, note that, irrespective of the specific
jump distribution p(�), equipartition holds in the sense that
k〈r2〉/2 = dT /2 in d space dimensions.

D. Accumulation at boundaries

With a view to gaining further intuition on the effect of
a non-Gaussian white noise, we continue our exploratory
investigations by considering an independent particle inter-
acting with a fixed obstacle. The obstacle is modeled by an
external repulsive potential with range σ and energy scale
ε, of the form U (r) = v(|r|)�(σ − |r|). The potential v is
either harmonic v(r ) = ε(1 − r/σ )2 or exponential v(r ) =
ε exp{−1/[(σ/r )2 − 1]}. We restore a nonzero mass for nu-
merical purposes, as discussed in Sec. II A. To probe the
overdamped regime, we focus on small values of the inertial
time m/γ compared with the obstacle relaxation time τ =
γ σ 2/ε: The distribution indeed converges to a fixed profile,
as shown in Fig. 1.

We measure the evolution of the radial distribution of the
particle position away from the obstacle center. The obsta-
cle is located at the center of a two-dimensional (2D) box
with periodic boundary conditions. For different values of
ντ , we compare the profile for non-Gaussian white noise,
with jump distribution p(�) ∼ e−	/a , and the one for AOUPs
with persistence time 1/ν. The accumulation at the obstacle
boundary r = σ , shown in Figs. 2(a) and 2(b) for a non-
Gaussian white noise, is qualitatively analogous to that found
with a persistent noise, reported in Figs. 2(c) and 2(d): It is
more and more peaked as ντ decreases. This is consistent
with previous results for persistent active particles [21,61–63].
For a harmonic obstacle, the distribution is singular at r = σ

for non-Gaussian noise, at variance with the persistent case,
and a cusp appears for ντ < 5, reminiscent of the profile
under harmonic confinement. When increasing a/σ at fixed
ντ , which amounts to increasing the temperature T ∼ νa2 as
shown in in Figs. 2(e) and 2(f), the particle probes deeper
regions of the potential, as expected.

Overall, our results support that the particle is effectively
attracted to the obstacle boundary for small ντ . In this regime,
the particle has ample time to go down the potential wall
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FIG. 1. Numerical results of the distribution of position for a
particle subjected to a non-Gaussian white noise in two dimensions.
The shaded region represents the form of the potential. The noise
has a jump distribution p(�) ∼ e−	/a and the particle evolves in
the potential v(r ) = ε exp{−1/[(σ/r )2 − 1]}�(σ − r ). The position
PDF is reported as a function of the distance from the center of
the potential for different values of m/τγ , where τ = γ σ 2/ε: It
converges at small values of m/τγ . The parameters are T = 1,
γ = 1, ε = 10, σ = 1, and ν = 20.

by steepest descent between two successive pulses, with
typical time τ = γ σ 2/ε. Hence it effectively accumulates
down the potential instead of exploring the whole available
space uniformly. In short, if the particle ever goes up the
wall, it immediately goes down and hence the probability
increases right at the edge of the obstacle. Assuming the
obstacle can be viewed as a fixed particle, this suggests that
effective two-body attraction could emerge in an assembly of
particles driven by a non-Gaussian white noise, even though
bare interactions are repulsive. A related question is whether
these attractive effects, if present, are sufficiently strong to
induce MIPS.

III. COLLECTIVE DYNAMICS

A. Quorum sensing interactions

To address interactions between particles, we first consider
the case where the statistics of self-propulsion depend on the
local density. Such quorum-sensing interactions are relevant
to model cells that adapt their motility to their local envi-
ronments [64], leading to rich collective behaviors [65]. For
persistent self-propelled particles, a propulsion speed decreas-
ing as the local density increases has been shown to lead
to MIPS [3,50,66]. Furthermore, quorum-sensing interactions
can be seen as an effective description of the kinetic slowing
down induced by repulsive pairwise forces between particles
[50,66–69], despite some important qualitative differences
between these models [70,71].

In the context of a non-Gaussian white noise, we model the
dynamics of an individual particle by

γ
dxi

dt
= ηi , (21)

with the important difference that, now, the noise cumulants
κ (n)

α1,...,αn
in Eq. (5) depend on the local density ρ(x, t ) =

∑
i δ

(d )(x − xi (t )):

κ (n)
α1,...,αn

(ρ) = ν

∫
	α1 · · · 	αnpρ (�)d�. (22)

In practice, this is implemented by assuming that the jump
distribution pρ (�) itself is affected by ρ. In addition, each
individual noise ηi remains independent between particles.
The corresponding dynamics for the average density ρ̂(x, t ) =
〈ρ(x, t )〉 reads

∂t ρ̂ =
∑
n�1

(−1)n

n!
∂xα1

· · · ∂xαn

[
ρ̂κ (n)

α1,...,αn
(ρ̂ )

]
, (23)

which can also be written as

∂t ρ̂ = ν

∫ ∑
n�1

(−� · ∂x)n

n!
[pρ (�)ρ̂]d�. (24)

The emergence of a motility-induced phase separation at large
scale can then be determined from a linear stability analysis,
in the spirit of [50,58].

To do so, we consider fluctuations around the homoge-
neous profile ρ0 and work to linear order in δρ = ρ̂ − ρ0,

∂tδρ = ν

∫
d�[pρ (�) + ρ0p

′
ρ (�)]|ρ0

∑
n�1

(−� · ∂x)n

n!
δρ, (25)

where p′
ρ = dpρ/dρ. We infer the dynamics of the Fourier

modes δρk(t ) = ∫
δρ(x, t )eik·xdx as

∂t δρk = νδρk

∫
d�[pρ (�) + ρ0p

′
ρ (�)]|ρ0

∑
n�1

(i� · k)n

n!

= νδρk

∫
d�[pρ (�) + ρ0p

′
ρ (�)]|ρ0 (ei�·k − 1)

= νδρk

[(
1 + ρ0

d

dρ

)
〈ei�·k〉|ρ0 − 1

]
. (26)

Assuming that the jump distribution does not have any angular
dependence, so that only even moments of � are nonzero,
we deduce the following criterion for the occurrence long-
wavelength instabilities:(

1 + ρ0
d

dρ

)
〈�2〉 < 0. (27)

This instability criterion does not depend on the jump rate ν,
as expected in the absence of any other time to compare it to.

To assess the existence of phase separation, we perform
simulations in a finite 2D box with periodic boundaries
conditions. For simplicity, we choose the jump length to be
fixed, pρ (�) = δ(|�| − a(ρ)), where a depends on the local
density as

a(ρ) = aM + am − aM

2

[
1 + tanh

ρ − ρm

�ρ

]
. (28)

The typical values at low and high densities are aM and am,
respectively. In practice, the local density is determined within
a fixed radius surrounding each particle. For appropriate
values of parameters, one indeed observes a complete phase
separation between dense and dilute regions, as reported in
Fig. 3.
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FIG. 2. Radial distribution of particle position away from the obstacle center. The shaded region represents the obstacle potential: (a), (c),
and (e) harmonic v(r ) = ε(1 − r/σ )2 and (b), (d), and (f) exponential v(r ) = ε exp{−1/[(σ/r )2 − 1]}. The blue dashed line in (a)–(d) refers
to the equilibrium limit. The remarkable feature is the accumulation of particles in the vicinity of the obstacle without the need to invoke
memory effects, at a location where the equilibrium profile is featurelessly flat. (a) and (b) Non-Gaussian white noise for different values of
ντ , where τ = γ σ 2/ε. The parameters are T = 1, γ = 1, ε = 10, σ = 1, and m = 10−4. (c) and (d) Exponentially correlated Gaussian noise
with persistence time 1/ν (AOUPs). The parameters are the same as in (a) and (b). (e) and (f) Non-Gaussian white noise for different values
of a/σ at fixed ντ = 2. Since the temperature T ∼ νa2 varies, the potential v(r )/T is not drawn here. All other parameters are the same as in
(a) and (b).

B. Pairwise forces and effective attraction

To study the interplay between pairwise forces and non-
Gaussian noises, we have performed 2D simulations of par-
ticles interacting via a two-body repulsive potential U =∑

i �=j v(ri − rj ), where v(r ) = ε[(σ/r )12 − 2(σ/r )6]�(σ −
r ) [72]. For similar interaction potentials, RTPs, ABPs, and

AOUPs all display MIPS [5,19,51,71]. Our goal is to sort out
the relative contributions of the persistence, on the one hand,
and non-Gaussian statistics, on the other, which are typically
intertwined in active particles.

We work at fixed particle density ρ0 = 0.6, for which
ABPs exhibit MIPS at large persistence, and we consider a
fixed jump length p(�) = δ(|�| − a). The equilibrium limit,
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FIG. 3. Phase separation for density-dependent jumping length
a(ρ ), as given in (28), in a 2D box of size L, with periodic boundary
conditions. For every particle, the blue circle denotes the area over
which the local density is computed. The parameters are ρ0 = 0.6,
ρm = 0.6, �ρ0 = 0.006, L = 40, aM = 10, and am = 1.

corresponding to a Gaussian noise, is achieved as the hop-
ping range a → 0 and the hopping frequency ν → ∞ while
keeping T ∼ νa2 fixed. Hence, we progressively drift away
from equilibrium by slowing down the kicks at fixed temper-
ature, namely, by either reducing ν or increasing a at fixed
νa2. In addition, to prevent particles from crossing each other
when they should not, we use a finite yet small value of mass
m. Note that this requires using extremely small time steps,
which significantly increases numerical cost.

The static structure is characterized by the two-body den-
sity correlation g(r − r′) = (1/ρ2

0 )〈ρ(r)ρ(r′)〉. We observe
that the first two peaks of g, close to r = {σ, 2σ }, increase
when departing from the equilibrium regime, as shown in
Fig. 4. This suggests an increase of local order compatible
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r/σ
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0.5

1.0

1.5
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g
( r

)

a/σ
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20
40

FIG. 4. Density pair correlation g as a function of interparticle
distance r scaled by particle diameter σ . The hopping range a is
varied at constant νa2 = 1. Note that the first and second peaks
become all the more pronounced as we depart from equilibrium.
The parameters are ρ0 = 0.6, m = 10−3, L = 40, γ = 1, σ = 1, and
ε = 102.

with the emergence of motility-induced clustering. Note, how-
ever, that for the times and sizes accessible to our numerics,
we could not observe a complete phase separation. We defer
an extensive analysis of the corresponding finite-size effects
to future works.

C. Generalized Dean-Kawasaki equation

To describe collective effects, we now analyze the statistics
of the fluctuating particle density ρ for pairwise forces. The
dynamics of ρ can be obtained in the same vein as for a
Gaussian white noise by using Itô calculus [52,53], yet this
derivation must be greatly revised due to the non-Gaussian
nature of the noise. This was considered two decades ago
in the mathematical literature [34–36]. Appendix A gives
the proper discretization scheme in physical terms, recently
revived in [45], which is consistent with differential calculus
for a generic non-Gaussian noise.

The corresponding chain rule then leads to

∂tρ = −∂x ·
∑

i

dri

dt
∗ δ(x − ri )

= −∂x ·
∑

i

( − γ −1∂ri
U + ηi

) ∗ δ(x − ri ), (29)

where the multiplicative noise signaled by the ∗ product must
be understood in terms of �ρ(x, t ) = ρ(x, t + �t ) − ρ(x, t )
and �ηi = ∫ t+�t

t
dτ ηi (τ ) as

�ρ = −∂x ·
∑

i

[
− γ −1∂ri

Uδ(x − ri )

+ e�ηi ·∂ri − 1

�ηi · ∂ri

δ(x − ri )�ηi

]

= −∂x ·
∑

i

[
− γ −1∂ri

Uδ(x − ri )

+ e−�ηi ·∂x − 1

−�ηi · ∂x
δ(x − ri )�ηi

]
. (30)

This allows us to determine the Kramers-Moyal coefficients
{K (k)}, defined by

K (k)(x1, . . . , xk ) = lim
�t→0

〈�ρ(x1) · · · �ρ(xk )〉
�t

. (31)

Once these coefficients are known, we can directly write an
Itô-discretized stochastic equation for ρ, in the form

∂tρ = K (1) + N , (32)

where N denotes noise. Here the white noise is non-Gaussian,
with zero mean and cumulant amplitude given by K (k) for k �
2. A tedious but straightforward calculation leads to

K (1)(x) = γ −1∂x ·
[
ρ(x, t )

∫
y
∂xv(x − y)ρ(y, t )

]

− ∂x ·
∞∑

p=0

(−1)pκ (p+1)

(p + 1)!
∂p

x ρ (33)
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and, for k � 2,

K (k) = (−1)k∂x1 · · · ∂xk

∑
p1,...,pk

(−1)p1+···+pkκ (p1+···+pk+k)

(p1 + 1)! · · · (pk + 1)!

× ∂p1
x1

· · · ∂pk

xk
ρδ(x1 − x2) · · · δ(xk−1 − xk ). (34)

Equations (32)–(34) can be viewed as the non-Gaussian gen-
eralization of the Dean-Kawasaki equation. Again, we stress
that, by construction, it is written in Itô form. A somewhat
more physically appealing form reads

∂tρ = −∂x · j, (35)

where the fluctuating current j is given by

j(x, t ) = −Dxρ − 1

γ
ρ(x, t )

∫
y
∂xv(x − y)ρ(y, t ) + N . (36)

The notation Dx, which generalizes the simple diffusive trans-
port, has already been introduced in (8).

One can reformulate the Langevin equations (32)–(34)
in terms of a Martin–Siggia–Rose–Janssen–De Dominicis
path integral. We demonstrate in Appendix B that the
corresponding dynamical action can be written as

S =
∫

x,t

[
ρ̄∂tρ + 1

γ
∂xρ̄ ·

∫
y
ρ(x, t )∂xv(x − y)ρ(y, t )

]

− ν

∫
x,�,t

ρ(x, t )[eρ̄(x+�,t )−ρ̄(x,t ) − 1]p(�). (37)

The Itô discretization ensures that one does not have to deal
with any Jacobian. We treat here ρ as a well-behaved field
of integration, though it is a priori a sum of δ functions
centered around each particle. A formal proof that this is
indeed legitimate for an ideal gas of Brownian particles has
been given in [73]. While (37) is fully general, it is also
remarkably complex. As a consistency check, one can pro-
ceed directly from a Doi-Peliti approach using the second-
quantized operators a and ā [74,75], where the contribution
for the particle hops reads

ν

∫
x,�

p(�)[ā(x + �, t ) − ā(x, t )]a(x, t ). (38)

Using the density operators ρ and ρ̄ introduced by Grass-
berger [76] as a = e−ρ̄ρ and ā = eρ̄ , one ends up with the
same dynamic action (37), as detailed in Appendix B.

D. Density correlations: Perturbative treatment

The Langevin equations (32)–(34), or alternatively the
dynamic action (37), provide a systematic toolbox to study
k-point correlations ρ (k) defined as

ρ (k)(x1, . . . , xk ) =
〈 ∑

i1 �=···�=ik

δ(x1 − ri1 ) · · · δ(xk − rik )

〉
(39)

through a BBGKY hierarchy [54]. For instance, the dynamics
of the first nontrivial correlations can be written for t ′ < t as

∂t 〈ρ(x′, t ′)ρ(x, t )〉 = ∂x · Dx〈ρ(x′, t ′)ρ(x, t )〉 + γ −1∂x

·
∫

y
∂xv(x−y)〈ρ(x′, t ′)ρ(x, t )ρ(y, t )〉.

(40)

In the limit t ′ → t− → ∞, using

〈ρ(x)ρ(x′)〉 = ρ (2)(x − x′) + ρ0δ(x − x′),

〈ρ(x′)ρ(x)ρ(y)〉 = ρ (3)(x, x′, y) + δ(x − x′)ρ (2)(x, y)

+ δ(x−y)ρ (2)(x, x′) + δ(x′ − y)ρ (2)(x, y)

+ δ(x − x′)δ(x − y)δ(x′ − y)ρ (1)(x),
(41)

we arrive at

0 = ∂x · [Dxρ
(2)(x, x′) + γ −1ρ (2)(x, x′)∂xv(x − x′)]

+ γ −1∂x ·
∫

y
∂xv(x − y)ρ (3)(x, x′, y). (42)

This can be regarded as the non-Gaussian generalization
of the Born-Green-Yvon (BGY) equation [77,78], originally
introduced for Hamiltonian dynamics.

We now consider the low-density regime where correla-
tions of order k > 2 are negligible and analytical progress is
possible: The generalized BGY equation (42) then reduces
to an equation for pair correlations g(r ) = ρ (2)(r )/ρ2

0 only.
For a generic interaction potential v(r), no exact solution can
be found. Using the Boltzmann-Gibbs weight as a reference
distribution, we expand the stationary state in powers of the
non-Gaussianity of the applied noise. A similar expansion
was recently carried out within the framework of quantitative
finance [39] for a single degree of freedom. Scaling position
as r′ = r/σ , where σ is a typical length scale such as the range
of interactions, we get

0 = ∂r′ · (g∂r′v) + T ∂2
r′

[
1 − cd,α

( a

σ

)2
∂2

r′ + O
( a

σ

)4
]
g,

(43)
where cd,α is a dimensionless coefficient which depends on
the spatial dimension d and on the jump parameter α. Using
the Boltzmann weight as a reference distribution, we expand
g in powers of a at fixed T ∼ νa2 as g(r′) ∼ e−(v(r′ )+w(r′ ))/T ,
where w → 0 in the Gaussian limit. We deduce that w =
O(a/σ )2 and that it satisfies

∂r′w

cd,α

=
( a

σ

)2
[
∂r′ − (∂r′v)

T

][
(∂r′v)2

T
− �r′v

]
. (44)

For a simple repulsive potential v(r) = ε(σ/r )12, we find

w(r)

cd,α

= 24ε
( a

σ

)2
[
d − 14

2

(σ

r

)14
+ 3(d − 40)

13

ε

T

(σ

r

)26

− 36

19

( ε

T

)2(σ

r

)38
]
, (45)

where we have used �rv = r1−d∂r (rd−1∂rv). The leading
contribution induces an attractive interaction at distances of
the order of σ , with a strength proportional to T/ν, similarly
to AOUPs with persistence 1/ν [22]. This suggests that effec-
tive attractive interactions are indeed to be expected in a dilute
limit and for mildly non-Gaussian noise. This is consistent
with our numerical observations in Fig. 4.
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IV. CONCLUSION

The dynamical evolution of an active particle is often
modeled after a Langevin equation in which the noise source
drives the particle away from equilibrium by displaying per-
sistent properties along with non-Gaussian statistics [6,79,80].
In this work, we have focused on the purely non-Gaussian ef-
fects of the active noise by discarding all memory effects. We
have provided analytical results for the position distribution
of a single particle in a harmonic trap. We have also reported
some numerical evidence of accumulation at the boundaries
of an obstacle. This supports that non-Gaussian effects alone
can yield effective attraction from bare repulsion, similarly to
the case of persistent particles [21,58,63,81].

Considering particles interacting via quorum sensing, we
reported the existence of a phase separation analogous to
MIPS [3,7]. For pairwise forces, the effective attraction en-
hances spontaneous clustering, as testified by density correla-
tions. However, within the explored range of parameters, we
have not witnessed any phase separation for such interactions.
To investigate collective effects, we have derived the stochas-
tic density dynamics by extending standard procedures to
non-Gaussian noise [52,53]. In the dilute limit and for weakly
non-Gaussian noise, a systematic expansion has confirmed
the emergence of effective attraction from bare repulsive
interactions, in line with our numerical results.

When driven by a non-Gaussian white noise, the dynamics
in the presence of interactions operates far from equilibrium
by breaking time-reversal symmetry. It would be interesting
to investigate deeper the consequences for a ratchet, where a
current develops spontaneously in an asymmetric periodic po-
tential, by analogy with persistent noises [82–85]. Moreover,
the properties of a heat engine subject to a non-Gaussian white
noise could be explored, following [45,86,87]. In particular,
the role of particle interactions in the performance of ratchets
and engines, studied recently for driven and persistent parti-
cles [88,89], calls for deeper investigation in the non-Gaussian
case.
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APPENDIX A: DISCRETIZATION ISSUES

This appendix is devoted to presenting, in a way familiar
to the chemist or the physicist [55–57] and based on the
Kramers-Moyal expansion, the rules of stochastic calculus
involving white but non-Gaussian noise. These rules are well
known to the mathematics community, which has its own

language to express these [34–36] (see also [38] for a more
recent exposition). The present appendix is also an alternative
to the more recent presentation by Kanazawa et al. [45].
To make things as pedagogical as possible, we begin with
a general Langevin equation for a process x(t ) evolving
according to

dx

dt
= A(x) + B(x)η(t ), (A1)

where the noise η is characterized by its cumulants

〈η(t1) · · · η(tn)〉 = κ (n)δ(t1 − t2) · · · δ(tn−1 − tn). (A2)

The experienced reader knows that, as such, Eq. (A1) needs to
be supplemented by a discretization rule (without which it is
meaningless) and the product Bη is best written using a warn-
ing sign B ∗ η. By definition, the Itô rule for understanding
(A1) reads

�x = x(t + �t ) − x(t ) = A(x(t ))�t

+B(x(t ))
∫ t+�t

t

dτ η(τ ), (A3)

where �t is an infinitesimal discretization scale. In the fol-
lowing, we will often use the notation �η = ∫ t+�t

t
dτ η(τ ). It

is easy to realize that

〈(�η)k〉 = κ (k)�t + o(�t ) (A4)

and thus, as �t → 0,

〈�x〉
�t

= A,
〈�xk〉
�t

= [B(x)]kκ (k) for k � 2 (A5)

and this explains the form of the master or Fokker-Planck
equation (7) obtained for B = 1 and A = −∂xU . Of course,
depending on context, other discretization rules could be
implemented on Eq. (A1) and they would lead to different
physical processes with different Fokker-Planck equations.
For instance, the Stratonovich rule would read

�x = x(t + �t ) − x(t ) = A�t + B(x(t ) + 1
2�x)�η

= A�t + B�η + 1
2B ′�x�η + · · ·

= A�t + B�η + 1
2B ′B�η2 + · · · , (A6)

where the ellipses stand for terms that are of lower order in the
�t → 0 limit only when the noise is Gaussian. For a Gaussian
white noise, the Stratonovich rule ensures that the chain rule
is consistent with stochastic calculus. In other words, given an
arbitrary function f (x), with the Stratonovich rule one may
safely write that

df

dt
= f ′(x(t ))

dx

dt
= f ′(A + B ∗ η) = f ′A + (f ′B ) ∗ η,

(A7)
where (f ′B ) ∗ η on the right-hand side is to be understood
in the Stratonovich sense as long as B ∗ η in the evolution of
x(t ) is as well. However, (A7) only holds for the Stratonovich
discretization and for η a Gaussian white noise. This is not
the case anymore for a generic non-Gaussian white noise.
Another discretization rule plays this special role of being
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transparent to differential calculus. It is defined as

�x = x(t + �t ) − x(t )

= A�t + eB(x)�η(d/dx) − 1

B(x)�η(d/dx)
B(x)�η, (A8)

where the t argument in x(t ) was omitted. Note that truncating
the right-hand side in (A8) to order �η2 leads to one recov-
ering (A6). To leading order in �t and for a Gaussian white
noise, both discretization prescriptions are identical. Now let
us prove that the prescription (A8) is indeed transparent to
differential calculus in the sense that differential calculus can
blindly be used. We consider a function f (x(t )) and ask
whether we have

df

dt
= f ′(x(t )) ∗ dx

dt

= f ′ ∗ (A + B ∗ η) = f ′A + (f ′B ) ∗ η. (A9)

Introducing a discretization scale �t , we must evaluate
�f = f (x + �x) − f (x) in two ways. We introduce the
generalized translation operator T̂B defined by T̂B[w] =
e�ηB(d/dx)−1
�ηB(d/dx) w(x). We begin with

�f = f (x + �x) − f (x)

= f (x + A�t + T̂B[B�η]) − f (x), (A10)

which we want to compare with the expression that would be
deduced from the blind application of the chain rule

�f = f ′A�t +
∫ t+�t

t

(f ′B ) ∗ η

= f ′A�t + T̂B[f ′B�η]. (A11)

If we can prove that Eqs. (A10) and (A11) are actually
identical, then we will have established our result. First we
note that for any function f ,

T̂B[f ′B�η] = (eB�η(d/dx) − 1)f, (A12)

which also means, for f (x) = x, that T̂B[B�η] =
(eB�η(d/dx) − 1)x, and we are left with the following identity
between Eqs. (A10) and (A11) to prove as �t → 0:

f (A�t + eB�η(d/dx)x) = f ′A�t + eB�η(d/dx)f. (A13)

We first remark that, on the left-hand side,

f (A�t + eB�η(d/dx)x)

= f (eB�η(d/dx)x) + f ′(eB�η(d/dx)x)A�t + O(�t2)

= f (eB�η(d/dx)x) + f ′(x)A�t + O(�t2). (A14)

We now prove the following exact identity (valid at arbitrary
�t):

f (eB�η(d/dx)x) = eB�η(d/dx)f (x). (A15)

To do so we introduce the variable y such that dx
dy

= B�η and
write x = g(y) where we do not need the explicit form of g.
In terms of the y variable, Eq. (A15) becomes

f (ed/dyg(y)) = ed/dyf (g(y)). (A16)

Using that for any function h(y), ed/dyh(y) = h(y + 1),
which we apply to h(y) = g(y) and to h(y) = f (g(y)),

we have thus proved Eq. (A16), which in turn establishes
Eq. (A15) and thus ensures the equality between Eqs. (A10)
and (A11). Hence, for a non-Gaussian white noise, the pre-
scription rule (A8) allows for the blind use of differential
calculus.

APPENDIX B: DYNAMIC ACTION

Our goal is to obtain an explicit expression of the dynamic
action S in terms of the jump distribution p of the non-
Gaussian noise. Following standard procedures, the action
associated with the dynamics of the position density in (35)
and (36) can be written as

S =
∫

x,t

[
ρ̄∂tρ + 1

γ
∂xρ̄ ·

∫
y
ρ(x, t )v(x − y)ρ(y, t )

]

−
∞∑

n=1

1

n!

∫
xn,t

ρ̄(x1, t ) · · · ρ̄(xn, t )〈ξ (x1, t ) · · · ξ (xn, t )〉c,

(B1)

where the noise term ξ is written in terms of the microscopic
noises {ηi} and ρi (x, t ) = δ(x − xi (t )) as

ξ (x, t ) = −
N∑

i=1

∇[ηi (t )ρi (x, t )]. (B2)

The noise cumulants can be expressed in terms of the variation
of density �ρj = �ρ(xj , t ) during a time �t in the absence
of potential as

〈ξ (x1, t ) · · · ξ (xn, t )〉c = lim
�t→0

〈�ρ1 · · ·�ρ2〉
�t

. (B3)

The density variation in the absence of potential is given by

�ρ(x, t ) =
N∑

i=1

∞∑
k=1

(−1)k

k!
[�ηi (t ) · ∇]kρi (x, t ). (B4)

The product of the density variations follows as

〈�ρ1 · · · �ρn〉 = ν
∑

kn,αn,in

〈
�η

k1
i1α1

· · · �η
kn

inαn

〉

×
n∏

j=1

(−1)kj

kj !

(
∂ij αj

)kj
ρij (xj , t ), (B5)

where the elements in αn = {α1, . . . , αn} run from 1 to d, the
ones in kn = {k1, . . . , kn} from 1 to ∞, and the ones in in =
{i1, . . . , in} from 1 to N . Substituting the expression for the
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noise cumulants, we get

〈�ρ1 · · · �ρn〉 = ν�t

∫ ∞∑
k1=1

1

k1!

(
−

d∑
α1=1

	α1∂1α1

)k1

· · ·
∞∑

kn=1

1

kn!

(
−

d∑
αn=1

	αn
∂nαn

)kn

×
N∑

i=1

ρi (x1, t ) · · · ρi (xn, t )p(�)d� + O(�t2). (B6)

We use the properties of the Dirac δ function to simplify the last sum in Eq. (B6) as

N∑
i=1

ρi (x1, t ) · · · ρi (xn, t ) = δ(x1 − x2) · · · δ(xn−1 − xn)ρ(x1, t ), (B7)

yielding

〈�ρ1 · · · �ρn〉 = ν�t

∫ ⎡
⎣ n∏

j=1

∞∑
k=1

(−� · ∇j

)k

k!

⎤
⎦ρ(x1, t )δ(x1 − x2) · · · δ(xn−1 − xn)p(�)d� + O(�t2)

= ν�t

∫ ⎡
⎣ n∏

j=1

(
e−�·∇j − 1

)⎤⎦ρ(x1, t )δ(x1 − x2) · · · δ(xn−1 − xn)p(�)d� + O(�t2). (B8)

When substituting Eq. (B8) in Eq. (B1), a term of the form

∫
xn

ρ̄(x1, t )(e−�·∇1 − 1)

⎡
⎣ρ(x1, t )

n∏
j=2

ρ̄(xj , t )(e−�·∇j − 1)δ(x1 − xj )

⎤
⎦

=
∫

xn

ρ(x1, t )

⎡
⎣ n∏

j=2

δ(x1 − xj )(e�·∇j − 1)ρ̄(xj , t )

⎤
⎦(e�·∇1 − 1)ρ̄(x1, t )

=
∫

x
ρ(x, t )[(e�·∇x − 1)ρ̄(x, t )]n (B9)

appears, where we have integrated by parts with respect to xn to get the second line and we have integrated over xn−1 =
{x2, . . . , xn} to obtain the third one. The dynamic action follows as

S =
∫

x,t

[
ρ̄∂tρ + 1

γ
∂xρ̄ ·

∫
y
ρ(x, t )∂xv(x − y)ρ(y, t )

]
− ν

∫
x,�,t

ρ(x, t )
∞∑

n=1

1

n!
[(e�·∇x − 1)ρ̄(x, t )]np(�)

=
∫

x,t

[
ρ̄∂tρ + 1

γ
∂xρ̄ ·

∫
y
ρ(x, t )∂xv(x − y)ρ(y, t )

]
− ν

∫
x,�,t

ρ(x, t ){exp[(e�·∇x − 1)ρ̄(x, t )] − 1}p(�). (B10)

The linear order in the conjugated field gives back the Fokker-Planck equation, so the dynamic action can be expressed

S =
∫

x,t

(ρ̄∂tρ + ∂xρ̄ · Dxρ) + 1

γ

∫
x,y,t

(ρ∂xρ̄)(x, t )∂xv(x − y)ρ(y, t ) + · · · , (B11)

where we have used the representation of Dx in term of the jump distribution in (9) and now the ellipsis denotes terms of higher
order in ρ̄. We introduce a new set of fields {a, ā} related to the previous one {ρ, ρ̄} through the Cole-Hopf transformation as

ā = eρ̄, a = ρe−ρ̄ . (B12)

Our aim is to show that the dynamic action can be simplified as

S =
∫

x,t

(ā∂ta + ∂xā · Dxa) + 1

γ

∫
t,x,y

(a∂xā)(x, t ) · ∂xv(x − y)(aā)(y, t )

=
∫

x,t

[
ā∂ta + a∂xā ·

∫
y
∂xv(x − y)(aā)(y, t )

]
− ν

∫
x,�,t

p(�)[ā(x + �, t ) − ā(x, t )]a(x, t ), (B13)
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which is equivalent to demonstrating that∫
x
eρ̄ (e−�·∇x − 1)(ρe−ρ̄ )

=
∫

x
ρ{exp[(e�·∇x − 1)ρ̄] − 1}. (B14)

The operator e�·∇x corresponds to the translation operator by
a vector �, whose effect on an arbitrary function f (x) is given
by

e�·∇xf (x) = f (x + �). (B15)

Therefore, Eq. (B14) can be written as

∫
x
[ρ(x − �)eρ̄(x)−ρ̄(x−�) − ρ(x)]

=
∫

x
ρ(x)[eρ̄(x+�)−ρ̄(x) − 1]. (B16)

Eventually, by translating the argument as x → x − � in the
first term on the right-hand side, the validity of this equation
follows immediately.
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