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An outstanding challenge is to provide a comprehensive framework predicting how to control 
the collective states of active systems, and how to optimally switch between such states. This 
agenda requires extending the tools of equilibrium thermodynamics to properly capture and 
account for the nonequilibrium properties of active matter.

From empirical to optimal control
Active matter encompasses a large class of nonequilib-
rium systems where individual components convert 
some energy resources, naturally present in their envi-
ronment, into mechanical work to produce a sustained 
dynamics. Such systems can be either biological (e.g., 
bacterial swarms) or synthetic (e.g., catalytic colloids in 
a fuel bath). The studies of active matter therefore lie at 
the interface between Physics, Chemistry and Biology, 
with many potential applications in material design 
and biomedicine.

Experimental techniques have demonstrated the 
ability to alter the collective dynamics of active systems 
with various types of external perturbations. In many 
cases, one can simply shine light on the system to spe-
cifically trigger activity in space and time. This strategy 

has been successfully deployed in bacterial swarms [1], 
where locally modulating density allows one to select 
target profiles [Fig. 1], and in biomimetic materials of 
cytoskeletal filaments and molecular motors [2], where 
promoting and driving topological defects allows one 
to regulate internal flows [Fig. 1].

In many experiments, the spatiotemporal control 
of activity is often optimized using system-specific 
procedures. In general, optimizing the perturbation of 
active systems to stabilize target patterns has largely 
remained an empirical effort so far. Then, motivated 
by recent experimental progress, there is a dire need 
for a systematic roadmap guiding experiments to-
wards optimal control: how to determine the proto-
col which most efficiently changes the properties of 
active systems.
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of the external perturbation. In contrast, quantifying 
heat is more involved, since it needs tracking all the 
DOF dissipating energy. This task is generally challeng-
ing in active systems, since they include many DOF 
which are hardly accessible in experiments; typically, 
chemical DOF converting energy fuel into mechanical 
work. Remarkably, even from a theoretical perspective, 
many active models deliberately discard these under-
lying DOF, thus neglecting important contributions to 
the total dissipated heat.

Thermodynamically consistent models
Most active models have been primarily designed to re-
produce patterns, as observed experimentally, with only 
little care given to their energetic interpretation. Ongoing 
effort strives to build a novel generation of thermody-
namically consistent (TC) models which provide an un-
ambiguous quantification of heat by properly accounting 
for all sources of dissipation [7, 8, 9]. To this end, the main 
idea is to explicitly describe how the system couples with 
the external reservoirs fueling the activity of individual 
components [Fig. 2].

A remarkable by-product of TC models is that they 
are amenable to consistently evaluating heat at vari-
ous levels of descriptions, from particles to fields. 

Energetic perspective on control cost
Optimizing control first requires choosing an appropriate 
cost function. Some theoretical works have defined this 
cost by penalizing the deviation from target patterns. This 
approach has led to elegant results on how to best reverse 
the circulation flow of active nematics [3] (i.e., model for 
biomimetic materials [2]), and how to best deform an 
active drop [4] (i.e., model for a single cell). Despite the 
success of this approach, its implementation largely re-
mains system-specific, so that it is generally challenging 
to delineate any generic property of the corresponding 
optimal protocols.

An alternative strategy for defining the control cost is 
to rely on energetic observables, such as work and heat, 
derived from generic thermodynamic principles. The 
work is the energy provided by the operator to enforce a 
given perturbation; it was actually considered as cost in 
[4]. The heat is the energy dissipated into the thermostat. 
In active systems where fluctuations cannot be neglected, 
one should build on stochastic thermodynamics to de-
termine work and heat as stochastic observables: this was 
first developed in passive matter [5], and more recently 
extended to active matter [6].

Measuring work is usually straightforward, since it 
requires tracking only the degrees of freedom (DOF) 

◀ FIG. 1: (Top) 
Controlling the local 
activity of bacterial 
swarms with external 
light allows one 
to switch density 
patterns: from 
Einstein’s to Darwin’s 
portrait, respectively 
in left and right 
panels; adapted 
from [1]. (Bottom) 
Illuminating a 
mixture of filaments 
and molecular motors 
(light shed only on 
red area) favors the 
formation of defects 
(yellow points) and 
enhances velocity 
flows (black arrows); 
scale bar 20 µm, 
adapted from [2].
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Optimal control from response theory
The main challenge in controlling active matter is to 
properly rationalize the interplay between (i) how 
activity shapes collective behaviors, and (ii) how 
the system relaxes as a response to perturbations. 
To this end, a useful strategy consists in considering 
as a reference the quasistatic protocol (QP), which 
slowly drives the system through steady states, and 
examining the effect of weak deviations. This re-
sponse-based (RB) approach allows one to build 
the functional dependence of heat on the protocol 
by measuring some appropriate correlations in the 
unperturbed dynamics. The optimal protocol then 
follow from a standard minimization of the corre-
sponding functional.

In passive systems, the QP always achieves the least 
dissipated heat, as expected from equilibrium thermody-
namics; for a finite protocol duration, the optimal proto-
col follows the geodesics of some thermodynamic metrics 
[11]. In contrast, active systems dissipate energy at a con-
stant rate even at rest (i.e., in the absence of perturbation) 
to sustain their dynamics out of equilibrium, so that the 
QP is no longer optimal. Instead, the heat is now minimal 
for a finite protocol duration: it achieves the best trade-
off between the dissipation stemming from internal ac-
tivity (predominant for long duration) and that due to 
external perturbation (predominant for short duration) 
[Fig. 3]. The optimal protocol is no longer given by ge-
odesics, but can still be deduced from a straightforward 
variational principle [12].

The main advantage of the RB approach is its ver-
satility: it provides a systematic roadmap which can 
be deployed in a large variety of systems. In passive 
matter, it was shown useful both in experiments (e.g., 
folding DNA hairpins [13]) and in theoretical models 
(e.g., flipping the magnetization of spin systems [14]). 
In active matter, it was only used in minimal models 
so far, for a harmonically confined particle and for an 
assembly of repulsive particles [12]. Since many exper-
iments have already shown how to accurately measure 
the response of active systems, the RB approach has 
the potential to foster future experimental studies on 
optimal control.

Remarkably, this framework can be straightforwardly 
adapted to other cost functions than heat and work. 
In practice, choosing any cost which is time-extensive 
in the unperturbed dynamics (e.g., currents in active 
matter) will yield the same non-monotonic behavior 
as how heat varies with protocol duration. Importantly, 
despite being clearly versatile and easily adaptable, the 
RB approach remains inherently limited by assuming 
smooth protocols, which discards any abrupt change 
potentially yielding lower cost, and long protocol du-
ration, which always drives the system slower than its 
typical relaxation.

Indeed, when models are formulated in terms of 
particles, the emerging collective states are often best 
analyzed at the hydrodynamic level. Yet, coarse-graining 
the dynamics typically involves some approximate clo-
sures which discard some fields, thus leading to under-
estimate the hydrodynamic heat. Recent methods have 
shown how to circumvent this issue with TC models [9, 
10]: they allow one to directly evaluate heat from the 
field dynamics without any discrepancy with respect to 
its particle-based counterpart.

In practice, although TC models clearly provide the 
relevant platform to quantify and optimize heat, only a 
few of such models have been developed in active mat-
ter so far. The challenge is to reformulate existing active 
models, whose energetics is often ambiguous, to enforce 
a proper thermodynamic consistency while maintaining 
their rich phenomenology intact.

▼ FIG. 3: (Left) The RB approach predicts that the dissipated heat decays like the inverse of the protocol 
duration when controlling passive matter, whereas it has instead a non-monotonic behavior when 
controlling active matter. (Right) A typical protocol to switch the collective state of active particles 
consists in controlling their self-propulsion and packing fraction. For instance, it can lead to induce 
transitions between homogeneous and phase-separated states.

▲ FIG. 2: Schematics of an active system in contact with a thermostat (heat 
bath) and two chemostats (fuel and product); adapted from [8]. Fixing the 
chemical potential difference between fuel and product sustains chemical 
reactions in the active system, which in turn maintains its components out 
of equilibrium. TC models explicitly account for the dissipation stemming 
from these reactions.
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Control of active phase transitions
The ability to optimally control active matter opens unprece-
dented perspectives for material design. Specifically, it offers the 
tools to craft systems which not only feature exotic phases, but 
which can now also optimally switch between such phases [Fig. 
3]. In that respect, optimal control is the relevant framework to 
guide the design of active actuators which selectively change 
their properties according to specific perturbation. Efficiently 
switching actuators then requires predicting the optimal pro-
tocol driving active systems through phase transitions.

Using the RB approach for this agenda entails several 
challenges. Indeed, crossing phase boundaries typically in-
volves exploring states with long relaxation times, which re-
quires even longer protocol duration to ensure slow driving. 
Moreover, for discontinuous transitions with noise-activated 
events (e.g., density nucleation in phase separation), the cost 
function usually no longer depends smoothly on control pa-
rameters, which conflicts with some assumptions of the RB 
framework. To overcome these difficulties, one could rely 
on spatially dependent control [14], for instance to reliably 
shape phase interfaces, and also gain further insights from 
some recent machine-learning methods [15]. n
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