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Modeling the dynamics of a tracer particle in an elastic active gel
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The internal dynamics of active gels both in artificial (in vitro) model systems and inside the cytoskeleton
of living cells has been extensively studied with experiments of recent years. These dynamics are probed using
tracer particles embedded in the network of biopolymers together with molecular motors, and distinct nonthermal
behavior is observed. We present a theoretical model of the dynamics of a trapped active particle, which allows
us to quantify the deviations from equilibrium behavior, using both analytic and numerical calculations. We
map the different regimes of dynamics in this system and highlight the different manifestations of activity:
breakdown of the virial theorem and equipartition, different elasticity-dependent “effective temperatures,” and
distinct non-Gaussian distributions. Our results shed light on puzzling observations in active gel experiments and
provide physical interpretation of existing observations, as well as predictions for future studies.
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I. INTRODUCTION

In vitro experiments have probed the nonthermal (active)
fluctuations in an “active gel,” which is most commonly
realized as a network composed of cross-linked filaments (such
as actin) and molecular motors (such as myosin-II) [1–4].
The fluctuations inside the active gel were measured using the
tracking of individual tracer particles and used to demonstrate
the active (nonequilibrium) nature of these systems through the
breaking of the Fluctuation-Dissipation theorem (FDT) [2]. In
these active gels, myosin-II molecular motors generate relative
motion between the actin filaments, through consumption of
ATP, and thus drive the athermal random motion of the probe
particles dispersed throughout the network. This tracking
technique was also implemented in living cells [5–7]. The
motion of these tracers in cells was also shown to deviate from
simple thermal Brownian diffusion.

There are several puzzling observations of the dynamics
of the tracer particles inside the active gels, for example, the
distinct non-Gaussianity of the displacement correlations and
their time dependence [1,4,8]. We propose here a simple model
for the random active motion of a tracer particle within a
(linearly) elastic active gel, and we use our model to resolve
their distinct nonequilibrium dynamics. On long time scales
the tracer particles are observed to perform hopping-like
diffusion, which is beyond the regime of the present model and
will be treated in following work, as will be the introduction
of nonlinear elasticity [9]. The activity is modeled through
colored shot noise [10,11], and the elastic gel is described by
a confining harmonic potential. We use the model to derive
expressions directly related to the experimentally accessible
observations, such as the position and velocity distributions
and their deviations from the thermal Gaussian form. Our
model allows us to offer a physical interpretation to existing
experiments, to characterize the microscopic active processes
in the active gel, and to make specific predictions for future
exploration of the limits of the active forces and elasticity.
The simplicity of this model makes this model applicable to a
wide range of systems and allows us to gain analytic solutions,
intuition, and understanding of the dynamics, which is usually

lacking in out-of-equilibrium systems. This would be more
difficult to obtain with a more complex description of the gel,
such as visco-elastic that has more intrinsic time scales.

II. MODEL

Our model treats a particle in a harmonic potential, kicked
randomly by thermal and active forces (active noise) [11]. The
corresponding Langevin equation for the particle velocity v (in
one dimension or one component in higher dimensions, with
the mass set to m = 1) is

v̇ = −λv + fa + fT − ∂U (x)

∂x
, (1)

where λ is the effective friction coefficient and the harmonic
potential is U (x) = kx2/2, with k proportional to the bulk
modulus of the gel (related to the gel density, cross-linker
density, and other structural factors). The thermal force fT is an
uncorrelated Gaussian white noise: 〈fT (t)fT (t ′)〉 = 2λT δ(t −
t ′), with T the ambient temperature, and Boltzmann’s constant
set to kB = 1.

We model the active force fa as arising from the indepen-
dent action of Nm molecular motors, each motor producing
pulses of a given fixed force ±f0, for a duration �τ (either a
constant or drawn from a Poissonian process with an average
value �τ , i.e., shot noise), with a random direction (sign). The
active pulses turn on randomly as a Poisson process with an
average waiting time τ (during which the active force is zero),
which determines the “duty ratio” of the motor (the probability
to be turned “on”): pon = �τ/(τ + �τ ).

III. RESULTS: MEAN KINETIC AND
POTENTIAL ENERGIES

The mean-square velocity and position fluctuations of the
trapped particle, essentially the mean kinetic (Tv = 〈v2〉) and
potential (Tx = k〈x2〉) energies, can be calculated for the
case of shot noise force correlations [details given in the
Appendices, Eqs. (A1a)–(C4), and Figs. 3–4]. Note that the
mean 〈·〉 is over many realizations of the system or over a long
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time. In the limit of vanishing trapping potential the position
fluctuations 〈x2〉 diverge, but the potential energy approaches a
constant: Tx |k→0 → f 2

0 �τ/λ. The kinetic energy approaches
the constant value for a free particle [11]: Tv|k→0 → Tx/(1 +
λ�τ ). We therefore find that the virial theorem is in general not
satisfied in this active system, which in a harmonic potential
gives Tv|eq = Tx |eq , even in the limit of weak trapping. The
virial theorem, and equipartition, breaks down due to the strong
correlations between the particle position and the applied
active force: In the limit of perfect correlations, the particle
is stationary at x = ±x0 when the force is turned on (the
stationary position in the trap where the potential balances the
active force: x0 = f0/k), and at x = 0 when it is off. In this
extreme case the potential energy is finite while the kinetic
energy is zero.

In the limit of strong trapping k → ∞,k/λ2 � 1, the
potential energy behaves as Tx ∝ k−1 [Eqs. (B6) and (B9)],
while the kinetic energy decays faster as Tv ∝ k−3/2 [Eq. (D2)].
One can understand this limit as follows: When the trapping is
very strong, the shortest time scale in the problem is the natural
oscillation frequency in the trap, ωk ∼ √

k. In this regime
of k�τ 2 � 1 we find that during the active pulse �τ , the
particle reaches x0, and the mean potential energy is therefore
proportional to Tx ∼ kx2

0 ∝ 1/k. The kinetic energy in this
limit decays faster, since the fraction of time that the particle
is moving is only during the acceleration phase determined
by the time scale ω−1

k ∼ √
k. We therefore find that in the

presence of strong elastic restoring forces the potential energy
will be much larger than the kinetic energy, in an active system
(Tx � Tv). This was recently found in the study of active
semiflexible polymers [12].

Note that in a real active gel the different parameters maybe
coupled: larger local density of the network filaments increases
the local value of the elastic stiffness parameter k but may also
increase locally the density of motors and their ability to exert
an effective force, thereby increasing Nm and f0. The tracer
bead behavior as expressed by Tv and Tx can therefore be a
complex function of the local network parameters.

IV. RESULTS: VELOCITY AND POSITION
DISTRIBUTIONS

The distributions of the velocity and position in the different
regimes are shown in Fig. 1 for the case of a single active
motor. The simulations of the model were carried out using
explicit Euler integration of Eq. (1) (see also the Appendices
for details). We study this case in order to highlight the
deviations from Gaussian (equilibrium-like) behavior, which is
restored by many simultaneous motors [11]. In an infinite gel,
with a constant density of motors, we may therefore treat the
distant (and numerous) motors as giving rise to an additional
thermal-like contribution to the tracer dynamics [Eqs. (D1)
and (D2)], while the nonequilibrium behavior is dominated by
a single proximal motor [1].

In the limit of weak damping, λ�τ � 1, both the posi-
tion and velocity distributions are very close to Gaussian,
with the width of the Gaussian distributions given by Tv

and Tx [Figs. 1(b) and 1(d), Eqs. (B4) and (C1)]: P (v) ∝
exp [−v2/(2Tv)], P (x) ∝ exp [−kx2/(2Tx)].

FIG. 1. (Color online) Distribution of position and velocity for
particle trapped within a harmonic trap of various stiffness (k =
1,1000 for a, b and c, d, respectively) and for different regimes of
friction (λ = 50,0.1 for a, c and b, d, respectively). The time scale
of the active bursts is �τ = 0.1, the amplitude of the active force
f0 = 1, and the waiting time τ = 1 (so that pon ≈ 0.1). For simplicity
we plot the behavior for the case of a single motor with a constant
burst duration. The insets compare the simulated distribution (blue
line) to the analytic approximation (red dashed line), in log-linear
scale, as simple Gaussians or as a sum of shifted thermal Gaussians.

In the highly damped limit, λ�τ � 1, the distributions
become highly non-Gaussian [Figs. 1(a) and 1(c)]. We can
make a useful approximation in this limit, by neglecting the
inertial term in Eq. (1) and get the following equation for the
particle position x inside the potential well:

λv = −kx + fa + fT (2)

⇒ ẋ = −λ̃x + fa + fT

λ
, (3)

where λ̃ = k/λ. This equation is now analogous to the equation
for the velocity v of a free particle [Eq. (1) when U (x) = 0].
Due to this analogy we can use the analytic solutions for
the free particle [11] to describe the particle position in the
well. For weak trapping [Fig. 1(a)], we therefore expect the
position distribution to be roughly Gaussian, since we are in
the limit of λ̃�τ � 1 of Eq. (3), with a width given by [from
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FIG. 2. (Color online) (a) Distribution of particle displacements P [�x(τω)], for various lag time duration τω (blue lines), for a single motor
and constant burst duration. The traces correspond to increasing time lag durations (black arrow), in the range 1 > τω > 5 × 10−4. The red
dashed line denotes the spatial distribution P (x), and the black dashed lines denote P (�x(∞)) [Eq. (6)] for the approximation of P (x) as a sum
of three Gaussians. Inset shows the displacement distribution for very short lag times τω. Parameters as in Fig. 1(c). (b) Calculated NGP for the
P [�x(τω)], for various number of motors (Nm), and confinement strength. The short horizontal black lines denote (left) the NGP of P (x), and
(right) of P [�x(∞)] [Eq. (6)], for the k = 1000,Nm = 1 case. (c) Displacement distributions [as in (a)] for a calculation without the inertia term
[Eq. (2), using k = 1000, Poissonian 〈�τ 〉 = 0.1, and increasing lag time indicated by the arrow τω = 10−3, 2.5 × 10−3, 5 × 10−3, 10−2, 1],
and (d) the corresponding NGP, comparing the simulation (solid gray lines) to the analytical result (see Appendix for details, dashed lines), for
k = 300,1000 (top, bottom). The NGP with inertia is given by the solid black lines.

Eq. (3) and (B6)]

T ′
x = ponNmλ(λ̃�τ + e−λ̃�τ − 1)

k2�τ
f 2

0 , (4)

Tx = 2
ponNm〈�τ 〉

λ
(
1 + λ̃〈�τ 〉)f 2

0 , (5)

where T ′
x describes the case of a constant �τ and Tx the

case of a Poissonian burst distribution and fits well the
calculated distribution [inset of Fig. 1(a)]. In the limit of weak
confinement we expect the velocity distribution to approach
the behavior of the free damped particle [11], which is well
approximated as a sum of thermal Gaussians, centered at v =
0, ± v0 (v0 = F0/λ). This is indeed a good approximation, as
shown in the inset of Fig. 1(a).

For strong potentials [λ̃�τ � 1, Fig. 1(c)] we expect from
the analogy given in Eq. (3) that the spatial distribution is
now well described by the sum of shifted thermal Gaussians
[Fig. 1(c)] [11], centered at x = 0, ± x0. The velocity distri-
bution in this regime is also non-Gaussian: the maximal active
velocity is of order v0 at the origin of the potential, but since
the particle immediately slows due to the confinement (up to a

complete stop at ±x0), the peaks of the distribution are located
at roughly ±v0/2.

V. RESULTS: NON-GAUSSIANITY OF THE
DISPLACEMENT DISTRIBUTION

The distribution of relative particle displacements
(Van Hove correlation function) P [�x(τω)], where
�x(τω) = x(t + τω) − x(t) (τω is the lag-time duration),
is a useful measure for the particle dynamics. We plot it in
Fig. 2(a) for the interesting regime of strong confinement
and damping and compared to the distribution of particle
positions P (x) [Fig. 1(c)]. We see that P [�x(τω)] has double
the number of peaks of P (x) and is distinctly non-Gaussian
for all τω. In Fig. 2(c) we show that the same qualitative
behavior is obtained for Poissonian burst duration.

The deviations from Gaussianity are quantified in Fig. 2(b)
using the Non-Gaussianity Parameter (NGP) of the displace-
ment distributions: κ = 〈�x4〉/3〈�x2〉2 − 1. This deviation
of the kurtosis from the value for a Gaussian is an established
measure for studying distributions [13]. We find that the NGP
has a finite value for τω → 0. This is as a consequence of the
periods during which the particle is accelerated by the active
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force, and the result is a finite probability for displacements of
the order of �x � v0τω [inset of Fig. 2(a)]. With increasing
τω the NGP reaches a maximum, at lag times that are of order
�τ , where the full effect of the active bursts is observed.

We find that the maximal value of the NGP for P [�x(τω)]
is close to the NGP of P (x) [Fig. 2(b)], which is a function for
which we have a good analytic approximation [11] [Eqs. (F1)
and (F2)]. In the limit of τω → ∞ the calculated NGP remains
finite and can be calculated analytically since the displacement
distribution becomes

P [�x(∞)] =
∫ ∞

−∞
P (x)P (x + �x) dx, (6)

and the P (x) in this regime is well approximated by the sum of
shifted thermal Gaussians [inset of Fig. 1(c)]. This calculation
fits well the simulated result [Fig. 2(b)]. For a larger number
of motors, the distribution P [�x(τω)] approach a Gaussian
[Figs. 2(b) and 6)].

In the limit where we discard inertia from the equations
of motion [Eq. (2)], we can calculate the NGP analytically
(see details in the Appendices). In Fig. 2(c) we plot the
displacement distributions for this case, and in Fig. 2(d) we
show that indeed the analytical calculation describes exactly
the simulation results. We find that this treatment captures
correctly the qualitative features of the full system, such as the
position of the peak, followed by a constant value at long lag
times. The large discrepancy is in the limit of τω → 0, where
the inertial effects of the oscillations inside the trap are missing
from Eq. (2).

VI. RESULTS: FDT

An alternative method to characterize the nonequilibrium
dynamics is through the deviations from the FDT [2]. We can
quantify these deviations by defining an effective temperature,
using the Fourier transform of the position fluctuations
[Sxx(ω)] and linear response [susceptibility of the position to
an external force χ (ω)] of the system. We can calculate both
for our trapped particle position using Eq. (3) for the λ̃�τ � 1
limit, to get [for Poissonian burst duration �τ , see details in
Appendix G, Eqs. (G1)–(G3)]

TFDT (ω) = ωSxx(ω)

2Im[χ (ω)]
= Nmponf

2
0 〈�τ 〉

λ[1 + (ω〈�τ 〉)2]
+ T . (7)

Note that TFDT (ω) is independent of the shape of the harmonic
potential (k) and is identical to the result for a free active
particle [11]. This result highlights the fact that while different
“effective temperatures” in an active system [Tv and Tx ,
Eqs. (4) and (5)] give a measure of the activity, they can have
very different properties.

VII. DISCUSSION

We now use our results to interpret several experiments
on active gels in vitro and extract the values that characterize
these active systems. In Ref. [2] the breakdown of the FDT
was measured. Comparing to our TFDT [Eq. (G3)] we find
that the onset of the deviation from equilibrium occurs for
frequencies ω � �τ−1, from which we find that �τ ≈ 100
ms, which is the scale of the release time of the myosin-II-
induced stress [2] in this system. The measured deviation from

the FDT was found to increase with decreasing frequency [2]
and at the lowest measured frequencies the ratio was found to
be TFDT (ω → 0)/T ≈ 20–100. This number fixes for us the
combination of the parameters given in Eq. (G3).

Recent experiments shed more detail on the active motion
in this system [1], and it was found that the tracer particle
performs random confined motion interspersed by periods of
large excursions. The confined motion part can be directly
related to the mean-square displacement in our model Tx

[Eq. (5)] and is observed to be a factor of Tx/T ≈ 10 − 50
larger than in the inert system (not containing myosins) [1].
These values are in general agreement with the values extracted
above for TFDT from Ref. [2], and note that we predict [Eqs. (5)
and (G3)]: TFDT (ω → 0)/Tx = 1 + λ̃〈�τ 〉 > 1.

Furthermore, in these experiments [1] it was observed that
the distribution of relative particle displacements P [�x(τω)]
is highly non-Gaussian. Comparing this to Fig. 2(b) we note
that both the experiments and in our calculations the NGP has
a finite value for τω → 0. With increasing τω the NGP reaches
a maximum, both in the experiments and in our calculations
[Figs. 2(b) and 2(d)]. By comparing to our model we expect
the peak to appear at τω ≈ �τ , so the observations [1] suggest
the burst duration is of order �τ ≈ 1–10, in agreement with
similar studies [4,8]. Note that very similar NGP time scales
were observed in living cells [14,15] Our model predicts that
the maximal value of the NGP is a nonmonotonous function
of pon, and this may be explored by varying the concentration
of ATP in the system. Furthermore, from our model we
predict that the NGP decrease with decreasing active force, and
increasing stiffness of the confining network [Figs. 2(b) and
2(d), Eq. (F2)]. These predictions can be related to the observed
activity dependence of the NGP in cells [15] and the decay of
the NGP during the aging and coarsening of an active gel [4].

The large observed deviations from Gaussianity indicate
that the particle is in the strong confinement regime:
λ̃〈�τ 〉 > 1. The maximal value of the observed NGP ≈2–4
can be used to get an estimate of Tx , by taking it to be equal
to NGPmax [Eq. (F2)]. This gives us Tx ≈ 10–30kBT and
pon ≈ 2%–3%. This value of Tx is in good agreement with the
estimate made above. The value of pon is in agreement with
the observation that the waiting-time between bursts is much
longer than the burst duration [2], and with the measured duty
ratio of myosin-II [16].

In the limit of τω → ∞ the observed NGP of the dis-
placement distribution P [�x(τω)] decays to zero [1], while
for the calculated confined particle the NGP remains finite
[Figs. 2(b) and 2(d)]. At long times (�10 s) the observed
trajectory has large excursions [1], which we interpret as
the escape of the particle from the confining potential. The
ensuing hopping-type diffusion causes the NGP to vanish,
as for free diffusion [17]. Within our model we therefore
interpret the observed time scale of the vanishing of the NGP,
τω ≈ 10–100 s, as the time scale, which corresponds to the
mean trapping time of the bead within the confining actin
gel. Beyond this time scale the bead has a large chance to
escape the confinement, and hop to a new trapping site, which
corresponds to a reorganization of the actin network. The real
actin-myosin gel undergoes irreversible processes that make
its properties time-dependent and render it inhomogeneous
[4,18–20]. Such effects make the comparison to the model
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much more challenging. Large deviations from Gaussianity
were also observed for the Van Hove correlations in other
forms of active gels [21].

VIII. CONCLUSION

We investigated here the dynamics of a trapped active
particle, with several interesting results: (i) The activity leads
to strong deviations from equilibrium, such as the breakdown
of the virial theorem and equipartition. We find that in the
presence of elastic restoring forces the activity is mostly
“stored” in the potential energy of the system. (ii) Different
“effective temperatures” give a measure of the activity, and
some are dependent on the stiffness of the elastic confinement.
(iii) The displacement, position, and velocity distributions of
the particle are highly non-Gaussian in the regime of strong
elastic confinement and small number of dominant motors.
These distributions can be used, together with our simple
model, to extract information about the microscopic properties
of the active motors. Note that in our model the activity affects
the motion and position distributions of the trapped particle,
which is complementary to models where the activity drives
only the large-scale reorganization that moves the particle
between trapping sites [22,23] or leads to network collapse
[24]. The results of this model are in good agreement with
observations of the dynamics of tracer beads inside active gels,
and the simplicity of the model may make it applicable for a
wide range of systems. More complex viscoelastic relations
can be used in place of the simple elasticity presented here to
describe the dynamics inside living cells [25,26], as well as
nonlinear elasticity [9]. Note that in most current experiments
on actin-myosin gels, the myosin-driven activity is strong
enough to lead to large-scale reorganization of the actin
network, eventually leading to the network collapse [4,18–20].
In order to observe the active motion for the elastically trapped
tracer in the intact network, which we have calculated, much
weaker active forces will be needed. Our work can therefore
give motivation for such future studied.
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APPENDIX A: NUMERICAL SIMULATIONS

The simulations of the dynamics of the particle inside the
one-dimensional harmonic potential were carried out using
explicit Euler integration of Eq. (1). We were careful to use
a small time step �t , such that it was always an order of
magnitude smaller than the smallest time scale in the problem.
The time scales in the problem are τ,�τ and

√
2/k, where

the last time scale is that of the oscillation frequency of the
particle inside the harmonic potential.

The iterative equations take the following form in terms of
the sampling time �t :

v(t + �t) = v(t) + [−λv(t) − kx(t)+fa(t)]�t+
√

2λT �tη,

(A1a)

x(t + �t) = x(t) + v(t)�t, (A1b)

where η is a random Gaussian variable with zero mean
and variance 1. Considering that both the waiting time and
the persistence time are exponentially distributed with mean
values τ and �τ , respectively, the iterative equation for the
active force fa obeys

fa(t + �t)=

⎧⎪⎨⎪⎩
fa(t) if fa(t) �= 0 prob. 1 − �t/�τ,

fa(t) if fa(t) = 0 prob. 1 − �t/τ,

0 if fa(t) �= 0 prob. �t/�τ,

ε{−f,f } if fa(t) = 0 prob. �t/τ,

(A2)

where ε{−f,f } = {f, − f } with same probability.

APPENDIX B: POSITION FLUCTUATIONS
OF A TRAPPED PARTICLE

From the model equations of motion [Eq. (1)], we can
calculate the mean-square fluctuations in the particle position
for a shot noise force correlations with average burst duration
�τ . We begin by Fourier transforming Eq. (1) to get

− ω2x̃ = iωλx̃ + f̃a + f̃T − kx̃, (B1)

where thẽ denotes the FT. From Eq. (B1) we get

x̃(ω) = f̃a(ω) + f̃T (ω)

−ω2 − iωλ + k
. (B2)

The fluctuations (correlations) are therefore

〈x2〉(ω) = 〈̃x(ω)̃x∗(ω)〉 =
〈
f̃ 2

a

〉
(ω) + 〈

f̃ 2
T

〉
(ω)

(k − ω2)2 + (ωλ)2
, (B3)

where we have 〈f̃ 2
a 〉(ω) = Nmponf

2
0

�τ
1+(ω�τ )2 (Poissonian shot

noise with mean burst length �τ ), and 〈f̃ 2
T 〉(ω) = 2λT

(thermal white noise) [11].
For the active part alone, we get

〈x2〉 = Nmponf
2
0

2π

∫ ∞

0

1

(ω2 − k)2 + (ωλ)2

�τ

1 + (ω�τ )2
dω.

(B4)
The solution for this integral is quite lengthy. In the limit
of weak trapping, k → 0, we get that the mean-square
displacement diverges,

〈x2〉 → 2
Nmponf

2
0 �τ

k(k�τ + λ)
, (B5)

such that the mean potential energy in this limit approaches a
constant value

T ′
x � k〈x2〉 → 2

Nmponf
2
0 �τ

(k�τ + λ)
. (B6)

In the limit of large k, we can expand the integrand of
Eq. (B4) in powers of k−1 to get the integral

〈x2〉 = 2Nmponf
2
0

π

∫ √
k

0

�τ

k2[1 + (ω�τ )2]
dω, (B7)

which is also bound with a maximal frequency corresponding
to the natural frequency of the harmonic trap. This integral
gives a simple expression, which gives a good fit description
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FIG. 3. (Color online) Calculated mean-square position fluctuations (plotted as a mean potential energy) for the trapped particle: Brown
line, full solution; purple line, approximate solution [Eq. (B8)]; blue line, approximate expression T ′

x for the limit λ�τ � 1 [Eq. (B9)]. In
both panels we used �τ = 1, and (a) λ = 10, (b) λ = 0.01. In (a) the blue line agrees perfectly with the full solution, while in (b) it has a
discrepancy at intermediate confinements.

as long as k � λ2 (Fig. 3):

〈x2〉k = 2Nmponf
2
0

πk2
arctan [

√
k/2�τ ]. (B8)

Finding the value of k for which the scaling changes from
〈x2〉 ∼ k−3/2 to 〈x2〉 ∼ k−2, is simply by equating the large
and small k limits of 〈x2〉k [Eq. (B8)].

In the limit of λ�τ � 1 we find the simple approximate
expression (Fig. 3)

T ′
x � k〈x2〉 � �τNmponf

2
0

8λ2(k�τ/2λ + 1)
. (B9)

The numerical simulations, in the highly damped limit
(λ�τ � 1) indicate the k−1 and k−2 limits [Fig. 4(a)].

APPENDIX C: VELOCITY FLUCTUATIONS
OF A TRAPPED PARTICLE

Similar to the procedure for the position fluctuations
described above, we can calculate the velocity fluctuations.
The mean-square fluctuations in the particle velocity are given

simply from Eq. (B4) by

〈v2〉 = Nmponf
2
0

2π

∫ ∞

0

ω2

(ω2 − k)2 + (ωλ)2

�τ

1 + (ω�τ )2
dω.

(C1)

The solution for this integral is again quite lengthy. As for
the position distribution, we can find an approximation for the
large k limit, using

〈v2〉 = 2Nmponf
2
0

π

∫ √
k

0

ω2�τ

k2[1 + (ω�τ )2]
dω, (C2)

which is also bound with a maximal frequency corresponding
to the natural frequency of the harmonic trap. This integral
gives a simple expression, which gives a good fit description
as long as k � λ2:

〈v2〉k = 2Nmponf
2
0

πk2�τ 2
(
√

k/2�τ − arctan [
√

k/2�τ ]). (C3)

The scaling of 〈v2〉k changes from 〈v2〉 ∼ k−0.5 to 〈v2〉 ∼ k−3/2

as k increases [Fig. 5(b)].

FIG. 4. (Color online) Simulated mean-square particle displacements (a) and velocity (b) in the limit of λ�τ � 1, using �τ = 1, λ = 50,
f0 = 1, pon = 0.1. The dashed lines indicate the power laws with exponents −1, − 2 in (a) and −3/2 in (b).
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FIG. 5. (Color online) Calculated mean-square velocity fluctuations for the trapped particle: brown line, full solution; purple line,
approximate solution [Eq. (C3)]; blue line, highly damped limit [Eq. (C4)]; and the dashed blue line is the free-particle value [11]. In
both panels we used �τ = 1 and (a) λ = 10, (b) λ = 0.01.

In the limit of λ�τ � 1 we have the simple approximate
expression

〈v2〉 � �τNmponf
2
0

4[λ(1 + �τλ) + π�τ 2
√

k3/8]
, (C4)

which fits quite well the full expression in Fig. 5(a).
The numerical simulations, in the highly damped limit

(λ�τ � 1) indicate the k0 and k−3/2 limits [Fig. 4(b)].

APPENDIX D: EFFECTIVE TEMPERATURE DUE TO
FORCES FROM DISTANT (AND NUMEROUS) MOTORS

In a linear elastic medium, the displacements and stresses
decay from a point source (at least) as 1/r2. Since there are
numerous distant motors affecting the bead, their cumulative
random forces are most likely to give rise to Gaussian
distribution of position and velocities for the trapped particle.
Each shell (of thickness dr) at radius r from the tracer beads
has Nm(r) = 4πr2ρ dr motors (at constant density ρ), and
therefore they contribute to the mean-square velocity the fol-
lowing contribution [in the limit of λ�τ � 1, using Eq. (C4)]:

〈v2〉 � Nm(r)

(
Nmponf0

a2

r2

)2
�τ

4[λ(1 + �τλ) + π�τ 2
√

k3]

∝ 1

r2
, (D1)

where we isolated the number of motors and the r dependence
of the active forces and introduced a length scale a beyond
which the far-field calculation holds. Integrating this
expression we get

〈v2〉f ar � 〈v2〉0(4πρa3), (D2)

where 〈v2〉0 is the value for the single proximal motor given in
Eq. (C4). We find that the far-field contribution of the distant
motors is proportional to their density ρ.

APPENDIX E: DISPLACEMENT DISTRIBUTION
FOR NUMEROUS MOTORS

As the number of motors kicking the particle (Nm)
increases, we find that the distribution of the particle position
becomes more Gaussian, even in the limit of larger damping
λ�τ � 1 and strong confinement λ̃�τ � 1. We demonstrate
this in Fig. 6, which shows that the position distributions
P (x) and the displacement distributions P [�x(τω)] approach
a Gaussian for Nm larger than ∼10.

APPENDIX F: NGP FOR THE HIGHLY DAMPED LIMIT

We find that the maximal value of the NGP for P [�x(τω)]
is close to the NGP of P (x) [Fig. 2(b)], which is a function for
which we have a good analytic approximation [11], given by

FIG. 6. (Color online) Simulated particle position distribution P (x) (red lines) and displacement distributions P (�x(τω)) (blue lines), for
increasing number of motors: Nm = 5,10,20 (left to right), using �τ = 1, λ = 50, f0 = 1, pon = 0.1.
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(for a single motor)

NGP (Nm = 1) = 4(1 − 3pon)p3
onT

2
x,1

3(1 + 2p2
onTx,1)2

, (F1)

where Tx,1 is the effective temperature of the spatial distribu-
tion [Eqs. (4) and (5)] for pon = 1. The maximal value of the
NGP for a single motor, as a function of pon is obtained from
Eq. (F1) at pon = α/(2 + 6α) and is given by

NGPmax = (1 + 3α)2

3α(2 + 3α)
− 1, (F2)

where α = kBT /Tx,1. This is a monotonously decreasing
function of the stiffness k, due to the decrease in Tx,1 in stiffer
gels [Eqs. (4) and (5)].

APPENDIX G: EFFECTIVE TEMPERATURE
FROM THE FDT, TF DT

Following Ref. [11], and using Eq. (3), we can write for the
λ̃�τ � 1 limit (when T = 0)

Response : χxx(ω) = 1

γ (iω − λ̃)
, (G1)

Fluctuations : Sxx(ω) = f 2
0

λ(λ̃2 + ω2)

〈�τ 〉
1 + (ω〈�τ 〉)2

, (G2)

⇒ TFDT (ω) = ωSxx(ω)

2Im[χ (ω)]
= Nmponf

2
0 〈�τ 〉

λ[1 + (ω〈�τ 〉)2]
, (G3)

resulting in Eq. (G3).

APPENDIX H: ANALYTIC CALCULATION OF THE NGP
WITHOUT INERTIAs

To compute the expression of the NGP, we derive the mean
quartic displacement (MQD) 〈�x4〉 in the regime where it is

time translational invariant:

〈�x4〉 = 〈
�x4

T

〉 + 〈
�x4

A

〉 + 6
〈
�x2

T

〉〈
�x2

A

〉
, (H1)

where the subscripts T and A refer, respectively, to the thermal
and active contributions. The expression of the MSD is given
by

〈
�x2

T

〉
(t) = 2kBT

k
(1 − e−t/τr ),

〈
�x2

A

〉
(t) = 2kBTA/k

(τ/τr)2 − 1

[
τ

τr

(
1 − e−t/τ

) + e−t/τr − 1

]
, (H2)

where τr = λ/k is a thermal relaxation time scale. The
MQD under purely thermal conditions is related to the
thermal MSD since the thermal process is Gaussian 〈�x4

T〉 =
3〈�x2

T〉2
. To compute the active MQD, we separate the

position displacement �xA(ti,tf) = xA(tf) − xA(ti) in several
contributions, such that 〈�x4

A〉 is a power law combination
of these contributions. We compute each term using the
active force statistics and take the limit of large ti at fixed t

corresponding to the time translational regime. The advantage
of the separation we propose is that each term of the active
MQD converges in such limit. The appropriate separation is

�xA,a(ti,tf) = (e−t/τr − 1)
∫ ti

dt ′χ (ti − t ′)fA(t ′), (H3a)

�xA,b(ti,tf) =
∫ t

dt ′χ (t − t ′)fA(ti + t ′), (H3b)

where χ (t) = e−t/τr/λ is the noncausal response function, and
t = tf − ti is the time lag. In the time translational regime, we
compute

〈
�x4

A,a

〉
(t) = T 2

A
3τ 4

r (2τ0 + τr)(τ0 + τ )e− 4t
τr (et/τr − 1)4

λ2(τr + τ )(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
, (H4a)

〈
�x3

A,a�xA,b
〉
(t) = T 2

A
3τ 4

r τ (2τ0 + τr)(τ0 + τ )e− 4t
τr (et/τr − 1)3(et( 1

τr
− 1

τ
) − 1)

λ2(τr − τ )(τr + τ )(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
, (H4b)

〈
�x2

A,a�x2
A,b

〉
(t) = T 2

A
τ 4

r (et/τr − 1)2e− 4t
τr

− t
τ

λ2(τr − τ0)(τ − τr)(τr + τ )2[τr(τ0 + τ ) − 2τ0τ ][τr(τ0 + τ ) + 2τ0τ ]

× {
4τ 4

0 (τ − τr)(τr + τ )e
2t
τr

− t
τ0 + (τr − τ0)(τ − τr)

[
τ 2

r (τ0 + τ )2 − 4τ 2
0 τ 2]et( 2

τr
+ 1

τ
)

+ (τ0 − τr)(τ0 + τ )(τr + τ )et/τ
[
4τ 2

0 τ − τ 2
r (τ0 + τ )

]
− 2(τ0 + τ )et/τr

[
2τ 2

0 τr + τ (τ0 − τr)(2τ0 + τr)
]
[2τ0τ − τr(τ0 + τ )]

}
, (H4c)

〈
�xA,a�x3

A,b

〉
(t) = −T 2

A
3τ 4

r e− 4t
τr (et/τr − 1)

λ2τ (τr + τ )

{
τ 2(2τ0 − τr)(τ0 + τ )

(τr − 3τ )(τr − τ )[τ0(τr − 2τ ) + τrτ ]
+ 2τ 4

0 e
−t( 1

τ0
− 2

τr
+ 1

τ
)

(τ0 − τr)(τ0 + τr)[τr(τ0 + τ ) − 2τ0τ ]

+ (τ0 + τ )[τ0(τr + τ ) − τrτ ]et( 1
τr

− 1
τ

)

(τr − τ0)
(
τ 2

r − τ 2
) + (τ0 + τ )[τ (τ0 + τr) − τ0τr]e

3t
τr

− t
τ

(τ0 + τr)
(
τ 2

r − 4τrτ + 3τ 2
) + τ 2e

2t
τr

τ 2
r − τ 2

}
, (H4d)
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〈
�x4

A,b

〉
(t) = T 2

A
3τ 4

r e− 4t
τr

λ2τ (τr + τ )

{
− τ (2τ0 − τr)(τ0 + τ )(τr + τ )

(τr − 3τ )(τr − τ )[τ0(τr − 2τ ) + τrτ ]

+ 8τ 5
0 (τr + τ )et(− 1

τ0
+ 2

τr
− 1

τ
)

(τr − τ0)(τ0 + τr)[τr(τ0 + τ ) − 2τ0τ ]]τr(τ0 + τ ) + 2τ0τ ]
− 4(τ0 + τ )[τ (τ0 + τr) − τ0τr]e

3t
τr

− t
τ

(τ0 + τr)
(
τ 2

r − 4τrτ + 3τ 2
)

+ 4(τ0 + τ )[τ0(τr + τ ) − τrτ ]et( 1
τr

− 1
τ

)

(τ0 − τr)(τr − τ )(τr + 3τ )
+ τ (2τ0 + τr)(τ0 + τ )e

4t
τr

(τr + 3τ )[τr(τ0 + τ ) + 2τ0τ ]
+ 2τe

2t
τr

τ − τr

}
, (H4e)

from which we deduce 〈
�x4

A

〉 = 〈
�x4

A,a

〉 + 3
〈
�x4

A,a�xA,b
〉 + 6

〈
�x2

A,a�x2
A,b

〉 + 3
〈
�xA,a�x3

A,b

〉 + 〈
�x4

A,b

〉
. (H5)
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