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ABSTRACT
We develop a framework describing the dynamics and thermodynamics of open non-ideal reaction–diffusion systems, which embodies
Flory–Huggins theories of mixtures and chemical reaction network theories. Our theory elucidates the mechanisms underpinning the emer-
gence of self-organized dissipative structures in these systems. It evaluates the dissipation needed to sustain and control them, discriminating
the contributions from each reaction and diffusion process with spatial resolution. It also reveals the role of the reaction network in powering
and shaping these structures. We identify particular classes of networks in which diffusion processes always equilibrate within the structures,
while dissipation occurs solely due to chemical reactions. The spatial configurations resulting from these processes can be derived by mini-
mizing a kinetic potential, contrasting with the minimization of the thermodynamic free energy in passive systems. This framework opens the
way to investigating the energetic cost of phenomena, such as liquid–liquid phase separation, coacervation, and the formation of biomolecular
condensates.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0231520

I. INTRODUCTION

Self-organization of molecules in solution can produce complex
spatio-temporal structures that range from self-assemblies to phase
separations, encompassing stationary patterns and oscillations. It
results from nonlinear effects which can be caused by a variety of
mechanisms.

One possible mechanism is based on molecular interactions,
typical of non-ideal systems, which can lead to self-organization
even at equilibrium. When no external energy is provided to sus-
tain self-organization, this mechanism is passive and described by
a dynamics exhibiting detailed balance. The theoretical description
for this mechanism is typically provided by Cahn–Hilliard the-
ory of spinodal decomposition1 and its variants.2 It can be further
understood from a thermodynamic perspective through theories

like that proposed by Flory and Huggins3,4 as a relaxation toward
equilibrium.

Another mechanism involves multimolecular chemical reac-
tions in open systems, which can also lead to self-organization in
the absence of interactions. Predicted by Turing5 and extensively
studied by the Brussels School,6–8 its experimental validation took
nearly four decades.9 From a thermodynamic viewpoint, this type
of self-organization is maintained by the continuous consumption
of energy,10–12 making the mechanism active with dynamics that
exhibits broken detailed balance. While our focus is on molecules
in solution, we note that this mechanism also applies to larger spa-
tial structures, such as predator–prey distributions,13,14 vegetation
patterns,15,16 and spiral patterns of galaxies.17

Recent years have seen renewed interest in the study of self-
organization due to its crucial role in biological systems, where
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biomolecular condensates18,19 resulting from liquid–liquid phase
separation form membraneless compartments. These condensates
have been observed to serve various functions, including storage
of molecules,20 enhancement of reaction rates by concentrating
enzymes and substrates,21,22 and maintenance of macromolecule
folding states.23

Many studies have attempted to reproduce the dynamics and
the concentration profiles of these condensates,24–27 without charac-
terizing the interplay between passive28 and active29,30 mechanisms
in their formation and regulation. Indeed, their nonequilibrium
nature is not easily discernible from examining the self-organized
spatial structures alone. Instead, it requires a more detailed analy-
sis of both diffusion and reaction fluxes, and how these fluxes are
related to energy consumption. This critical feature is known as
thermodynamic consistency.

Understanding the control of self-organized structures by out-
of-equilibrium chemical reactions and the resulting dissipation of
energy is crucial, especially in the field of biology. Achieving pas-
sive control is nearly impossible due to the difficulty in adjusting
molecular interactions. Consequently, it is necessary to rely on
active mechanisms. However, since biosystems operate within a lim-
ited energy budget and energy consumption is crucial for almost
all biological processes, efficient regulation is essential. Previous
studies have explored the regulation of such structures through
simple unimolecular reactions31,32 or examined their stability in
multimolecular reactions,33 yet a comprehensive framework to ana-
lyze the nonequilibrium aspects of self-organization is still lacking.
This work addresses this gap by highlighting the critical role of
the reaction network topology in defining the relationship between
self-organized structures and their thermodynamics.

We develop a general thermodynamic theory for open non-
ideal reaction–diffusion systems by integrating the thermody-
namic theories of both non-ideal chemical reactions34,35 and ideal
reaction–diffusion systems.10,11 This unified approach enables us to
investigate the energetics of self-organized structures and the inter-
play between passive and active mechanisms. We examine various
classes of reaction networks. For detailed balanced ones (open or
closed), we show that the dynamics always relaxes to equilibrium
while minimizing a suitable thermodynamic potential which plays
the role of a Lyapunov function that depends only on the energet-
ics and not on the kinetics. In these passive systems, the resulting
self-organized structures do not dissipate. For pseudo-detailed bal-
anced reaction networks, we show that the dynamics can be mapped
into a detailed-balanced dynamics minimizing a kinetic potential
that we identify and that plays the role of a Lyapunov function. Nev-
ertheless, these systems are active, and the resulting self-organized
structures dissipate. For complex balanced reaction networks (char-
acterized by Arrhenius-like reaction fluxes), such a mapping does
not exist, but the dynamics still minimizes a kinetic potential that we
construct and that plays the role of a Lyapunov function. These sys-
tems are also active, and the self-organized structures they produce
also dissipate. Remarkably, even though these systems are active, dif-
fusion processes equilibrate at steady state in both pseudo-detailed
balanced and complex balanced networks. However, most active
systems do not fall into these classes. Nonetheless, we show that
our theoretical framework can be used to systematically analyze
the energetics and the dissipation produced by the various active
processes generating the self-organized structures.

This paper is structured as follows. We begin in Sec. II by out-
lining the basic setup. Specifically, we define the representations
of chemical reactions in terms of chemical reaction networks and
graphs of complexes, which are crucial for the derivations of our
results. In Sec. III, we introduce the dynamical description of the
concentration fields and explore the concept of detailed balance in
Subsection III A. In Subsection III B, we discuss the conservation
laws of chemical reaction networks to identify molecule fragments,
known as moieties, which are transferred between chemical species
through reactions while remaining intact. These moieties will be
instrumental in identifying the nonconservative forces that break
detailed balance. We turn to thermodynamics in Sec. IV. We first
discuss the conditions needed for the dynamics to be thermody-
namically consistent. We then use moieties to rewrite the second
law of thermodynamics in a way that identifies the thermodynamic
forces driving the system out of equilibrium and the thermodynamic
potential acting as a Lyapunov function when forces are switched
off. In Sec. V, we make use of thermodynamics, along with the
representations of chemical reactions in terms of chemical reac-
tion networks and graphs of complexes, to derive our main findings
for pseudo-detailed balanced networks and complex balanced net-
works. We end our study in Sec. VI by analyzing the energetics
of various reaction networks using numerical simulations, includ-
ing a network that is neither pseudo-detailed balanced nor complex
balanced. Conclusions are drawn in Sec. VII.

II. BASIC SETUP
We consider non-ideal reaction–diffusion (RD) systems in

solution: ns interacting, reacting, and diffusing chemical species
(identified by the labels i ∈ S) are mixed together with a non-
reacting and abundant species called solvent that maintains the
temperature T and the volume V constant. We further assume that
RD systems are embedded within impermeable walls. The species
S are either chemostatted (labeled y ∈ Y), if exchanged with external
reservoirs called chemostats (labeled y ∈ Y too), or internal (labeled
x ∈ X). We use ny and nx for the number of chemostatted and inter-
nal species, respectively. Due to the exchanges with the chemostats,
RD systems are said to be open. Without exchanges, RD systems
would be closed.

A. Chemical reaction networks and graphs
of complexes

Chemical species are interconverted via chemical reactions
ρ ∈ R = {±1,±2, . . . ,±nr} characterized by the following equation:

∑
x

νx,ρ Zx +∑
y

νy,ρ Zy
ρ

ÐÐÐ⇀↽ÐÐÐ
−ρ

∑
x

νx,−ρ Zx +∑
y

νy,−ρ Zy, (1)

where Zi is the chemical symbol of the species i, while νi,ρ (respec-
tively, νi,−ρ) is its stoichiometric coefficient in reaction ρ (respec-
tively, −ρ). The set of species S might include non-reacting species
(labeled for instance nr). All reactions are assumed to be reversible:
for every (forward) reaction ρ ∈ R, reaction −ρ ∈ R and denotes its
backward counterpart.

On the one hand, chemical reactions (1) can be represented as a
hypergraph, known as a chemical reaction network (CRN), by map-
ping species into nodes and reactions into edges.36 Its topology is
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encoded in the ns × nr stoichiometric matrix S whose entries (for
ρ > 0),

Si,ρ = νi,−ρ − νi,ρ, (2)

specify the net variation of molecule number of species i in reaction
ρ. By definition, Si,−ρ = −Si,ρ and Snr,ρ = 0∀ρ.

On the other hand, the set of chemical reactions (1) can also
define the so-called graph of complexes. The nk complexes (identi-
fied by the labels k ∈ K) are aggregates of internal species acting as
reactants of a reaction,

Vk(ρ) =∑
x

νx,ρ Zx, (3)

and the graph of complexes is obtained using the complexes as nodes
and reactions as edges,

Vk(ρ)
ρ

ÐÐÐ⇀↽ÐÐÐ
−ρ

Vk(−ρ). (4)

Note that the same complex can be involved in different reactions.
For instance, if reactions have no internal species among their reac-
tants, they share the same complex (usually represented by the
symbol of empty set, i.e., ∅, as done in the example in Subsec-
tion VI D). The topology of the graph of complexes is encoded in
the nk × nr incident matrix ∂ whose entries (for ρ > 0),

∂k,ρ = 𝟙k,k(−ρ) − 𝟙k,k(ρ), (5)

specify whether the complex k is a product (positive value) or a
reagent (negative value) of reaction ρ (with 𝟙k,k′ being the Kronecker
delta).

The graph of complexes allows us to divide the set of reac-
tions R into 2ne disjoint lumped reactions identified by the labels
ε ≡ (k, k′) ∈ E, which collect the reactions interconverting the
complex Vk into Vk′ . Namely,

R =⋃
ε
Rε, (6)

with

Rε ≡ {ρ ∈ R such that Vk(ρ) = Vk and Vk(−ρ) = Vk′}. (7)

Note that, if ρ ∈ Rε, then −ρ ∈ R−ε with −ε ≡ (k′, k). By definition,
all reactions ρ ∈ Rε have the same stoichiometric coefficient (respec-
tively, matrix) for each internal species νx,ρ (respectively, Sx,ρ),
labeled νx,ε (respectively, Sx,ε) hereafter. On the other hand, there
might be two reactions ρ and ρ′ in Rε such that Sy,ρ ≠ Sy,ρ′ .

We conclude this subsection by introducing a topological quan-
tity, called deficiency, which essentially quantifies the number of
“hidden” cycles of CRNs (i.e., cycles that do not have a graphical
representation in the graph of complexes) and is known to under-
lie the emergence of complex behavior in ideal CRNs.37–42 A cycle is
formally defined as a right-null eigenvector ϕ = (. . . , ϕρ, . . .) of the
substoichiometric matrix for the internal species SX ,

∑
ρ>0

Sx,ρϕρ = 0. (8)

It, thus, represents a sequence of reactions (by specifying the num-
ber of times each reaction occurs) that upon completion leaves the

molecule number of the internal species unchanged. Some cycles can
be represented as loops in the graph of complexes. Indeed, the sub-
stoichiometric matrix for the internal species SX can be expressed in
terms of the incidence matrix ∂ using the composition matrix Γ as

Sx,ρ =∑
k

Γx,k ∂k,ρ, (9)

where

Γx,k(ρ) = νx,ρ (10)

specifies the stoichiometric coefficient of each internal species x in
each complex k. Hence, from Eqs. (8) and (9), it follows that any
right-null eigenvector of the incidence matrix ∂, defining a loop in
the graph of complexes, corresponds to a cycle. However, the con-
verse is not true, and this difference is encoded in the deficiency
defined as

δ ≡ dim ker(SX) −dim ker(∂), (11)

where dim ker(●) returns the dimension of the kernel of a matrix,
i.e., the number of linearly independent right-null eigenvectors.

B. Example
Consider a system composed of one internal species {X1} and

three chemostatted species {Y1, Y2, Y3} that are interconverted by
the following chemical reactions:

Y1
1

ÐÐÐ⇀↽ÐÐÐ
−1

X1,

X1 + Y2
2

ÐÐÐ⇀↽ÐÐÐ
−2

2X1,

X1 + Y3
3

ÐÐÐ⇀↽ÐÐÐ
−3

2X1.

(12)

The first pair of reactions {±1} represents the direct interconversion
of Y1 into X1, while the second (respectively, third) pair of reac-
tions {±2} (respectively, {±3}) represents the interconversion of
Y2 (respectively, Y3) into X1 promoted by X1 in an autocatalytic way.
In Fig. 1, we illustrate the CRN and graph of complexes represen-
tations introduced in Subsection II A for the chemical reactions in
Eq. (12).

Note that the substoichiometric matrix SX in Fig. 1 admits two
(linearly independent) cycles, namely,

(13)

The former is also a right-null eigenvector of the incidence matrix
corresponding to the loop,

V1
2
ÐÐ→V2

−3
ÐÐÐ→V1, (14)

while the latter is not. Hence, δ = 1.
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FIG. 1. Different representations of the chemical reactions in Eq. (12). (a) CRN representation in terms of a hypergraph where the species {X1, Y1, Y2, Y3} are mapped
into nodes, while the reactions ρ ∈ {1, 2, 3} are mapped into edges. The green double-headed arrows represent the exchange processes of the chemostatted species. The
topological properties of the CRN are encoded in its stoichiometric matrix S, where the red dashed (respectively, green dotted) line highlights the substoichiometric matrix
for the internal (respectively, chemostatted) species SX (respectively, SY ). (b) Graph of complexes representation where the complexes ∅ = Y1, V1 = X1, and V2 = 2X1 are
mapped into nodes, while the reactions ρ ∈ {1, 2, 3} are mapped into edges, and the exchange processes are not represented. The topological properties of the graph of
complexes are encoded in its incidence matrix ∂. The substoichiometric matrix for the internal species SX is related to the incidence matrix ∂ by the composition matrix Γ. The
reactions ρ = 2 and ρ = 3 (highlighted by the blue dashed line) interconvert the same pair of complexes, i.e., V1 and V2, and, thus, correspond to a single lumped reaction.
(c) Simplified representation of the graph of complexes where the lumped reactions ε1 = (∅, V1) and ε2 = (V1, V2) are mapped into edges instead of the reactions. Note
that all reactions, as well as all lumped reactions, are assumed to be reversible even though only the forward reactions and lumped reactions are represented.

III. DYNAMICS
The abundances of the chemical species i ∈ S in every

point of space r ∈ V are specified by the concentration fields
c(r) = (. . . , ci(r), . . .) following the RD equation:

∂tci(r) = −∇ ⋅ J i(c(r)) +∑
ρ>0

Si,ρ jρ(c(r)) + Ii(r), (15)

where Ii(r) is the exchange current of species i with the corre-
sponding chemostat [and thus, Ix(r) = 0∀r]; jρ(c(r)) is the net
current of reaction ρ > 0 given by the difference between the forward
ωρ(c(r)) ≥ 0 and backward ω−ρ(c(r)) ≥ 0 reaction flux,

jρ(c(r)) = ωρ(c(r)) − ω−ρ(c(r)); (16)

J i(c(r)) is the diffusion current of species i. For the sake of compact-
ness, we omit the time-dependence of any function [see for instance
the concentration fields in Eq. (15)].

Remark. Note that we implicitly assumed that the concen-
tration fields of the chemical species are large enough that their
dynamics becomes deterministic.43

A. Steady state
The steady-state solutions of the RD equation (15), i.e.,

∂tc(r) = 0, if they exist, can be classified as either equilibrium

or nonequilibrium steady states. Equilibrium steady states ceq(r)
satisfy

jρ(ceq(r)) = 0 and J i(ceq(r)) = 0, (17)

for all ρ ∈ R, i ∈ S, and r ∈ V . When the RD dynamics admits
well-defined equilibrium steady states, RD systems are said to be
detailed balanced. Nonequilibrium steady states css(r) are charac-
terized by

jρ(css(r)) ≠ 0 and/or J i(css(r)) ≠ 0, (18)

for some ρ ∈ R and/or i ∈ S.
If the steady-state concentration fields are constant for every

r ∈ V , they are said to be homogeneous and represented by ch
eq and

ch
ss for equilibrium and nonequilibrium steady states, respectively.

In general, steady-state concentration fields are r-dependent and are
said to be inhomogeneous. Also, equilibrium steady states can be
inhomogeneous when chemical species interact (as predicted by the
Cahn–Hilliard1 and Flory–Huggins3,4 theories).

B. Conservation laws
The conservation laws10,44,45 of the RD dynamics (15)

(labeled λ ∈ Λ) are linearly independent left-null eigenvectors
ℓλ
= (. . . , ℓλ

i , . . . ) of the stoichiometric matrix, namely,

∑
i
ℓλ

i Si,ρ = 0 ∀ρ. (19)
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They physically identify fragments of (or entire) molecules, called
moieties, that remain unaltered by the chemical reactions and the
diffusion processes: they are transferred from one species to another
via the chemical reactions and from one point in space to another
via the diffusion processes. Indeed, the moiety abundances, given by

Lλ
[c] =∑

i
ℓλ

i ∫
V

dr ci(r), (20)

are conserved by the RD dynamics (15) in closed RD systems [i.e.,
when Ii(r) = 0∀i],

dtLλ
[c] =∑

ρ>0
∑

i
ℓλ

i Si,ρ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

∫
V

dr jρ(c(r))

−∑
i
ℓλ

i ∫
V

dr ∇ ⋅ J i(c(r))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

= 0, (21)

where we used the definition of conservation law in Eq. (19)
and the fact that the volume V has impermeable walls, i.e.,
∫ V dr∇ ⋅ J i(c(r)) = 0. Note that there is always at least the con-
servation law ℓm

= (. . . , mi, . . .) (with mi being the molecular mass
of species i) since the total mass is conserved by the chemical reac-
tions. Furthermore, the set of conservation laws {ℓλ

} is not unique:
a linear combination of conservation laws is still a conservation
law. Different sets (i.e., different representations) identify different
moieties.

In open RD systems, when the Y species are chemostatted,
conservation laws are split into unbroken and broken conservation
laws,35,45 labeled λu ∈ Λu and λb ∈ Λb, respectively (this splitting
will be crucial in Subsection IV D to identify the energetic cost of
breaking the detailed balance condition and maintaining RD sys-
tems out of equilibrium). The unbroken conservation laws are the
largest subset of conservation laws that can be written with null
entries for the chemostatted species, i.e., ℓλu

y = 0 ∀y and ∀λu, and
hence, ∑x ℓ

λu
x Sx,ρ = 0. They identify moieties that are carried by the

internal species only and, consequently, are not exchanged with the
chemostats. The corresponding abundances are still conserved,

dtLλu[c] =∑
y

ℓλu
y
¯
=0

∫
V

dr Iy(r) = 0, (22)

despite the RD system being open. The broken conservation laws are
the other conservation laws: Λb = Λ/Λu. They identify moieties that
are carried by the chemostatted species too and, consequently, are
exchanged with the chemostats. The corresponding abundances are,
in general, not conserved,

dtLλb[c] =∑
y

ℓλb
y
¯
≠0

∫
V

dr Iy(r) ≠ 0. (23)

Note that open RD systems have always at least one broken con-
servation law since the total mass is not conserved by the exchange
processes and, consequently, ℓm is broken.

In Subsection IV D, we will use the unbroken conservation
laws to quantify the free energy exchanged between RD systems and

chemostats. To this aim, it is important to recognize that chemostat-
ting a species does not always break a conservation law.10,35 Hence,
the set of chemostatted species Y (and the set of the corresponding
chemostats) can be split into two disjoint subsets.

The potential species (labeled yp ∈ Yp) are the smallest sub-
set of chemostatted species such that all conservation laws {ℓλb}

with λb ∈ Λb are broken. Crucially, there is always a representa-
tion of the broken conservation laws such that each corresponding
moiety is exchanged with only one potential chemostat. Indeed, the
matrix (see the graphical representation in Fig. 2) whose entries are
{ℓλb

yp} (with λb ∈ Λb and yp ∈ Yp) is square and invertible45,46 and,
by labeling {ℓyp

λb
} the entries of the inverse matrix, the broken con-

servation laws can be represented in terms of the following linear
combination as:

∑
λb

ℓ
yp

λb
ℓλb. (24)

The abundance of each moiety in this representation,

Myp[c] =∑
i
∑
λb

ℓ
yp

λb
ℓλb

i ∫
V

dr ci(r), (25)

where i runs over all species S, changes [according to the RD equa-
tion (15)] only because of the exchanges with one specific potential
chemostat,

dtMyp[c] =∑
yp
′

∑
λb

ℓ
yp

λb
ℓλb

yp
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=𝟙yp ,yp

′

∫
V

dr Iyp
′(r) = ∫

V
dr Iyp(r), (26)

if all chemostatted species are potential species, i.e., Y = Yp. This
allows us to label each moiety in Eq. (25) using the label of
the chemostat it is exchanged with, i.e., yp, rather than the label
of the corresponding broken conservation law, i.e., λb. Note that
Eq. (26) specializes Eq. (23) for open RD systems with only poten-
tial chemostatted species and with the conservation laws expressed
according to the representation in Eq. (24). We emphasize that the
representation in Eq. (24) will be the one used to quantify the free
energy exchanged between RD systems and chemostats by entering
the definition of the thermodynamic potential in Eq. (42).

The force species (yf ∈ Yf ) are the other chemostatted species:
Yf = Y/Yp. The corresponding chemostats exchange moieties that
are already exchanged with the potential chemostats. Indeed, in gen-
eral, the abundance of each moiety in the representation given in
Eq. (24) changes according to

dtMyp[c] = ∫
V

dr Iyp(r) +∑
y f

∑
λb

ℓ
yp

λb
ℓλb

y f ∫V
dr Iy f (r), (27)

using Eqs. (15) and (25) and the splitting Y = Yp⋃Yf . Hence,
chemostatting the force species (after the potential species were
already chemostatted) does not break any new conservation law but
creates a flux of the same moiety between different chemostats. The
energetic cost of sustaining these fluxes will enter the definition of
the nonconservative work in Eq. (43).
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FIG. 2. Representation of the matrix with entries {ℓλb
i }, where λb is the row index

and i is the column index (namely, the matrix constructed using the broken conser-
vation laws {ℓλb} as rows). The matrix column (respectively, the entries) can be
further specialized into those corresponding to the internal species x (respectively,
ℓλb

x ), force chemostatted species yf (respectively, ℓλb
y f

), and potential chemostatted

species yp (respectively, ℓλb
yp

). The submatrix with entries {ℓλb
yp
} (red dotted line)

is square and invertible,45,46 and we label {ℓyp

λb
} the entries of the inverse matrix

where yp is the row index and λb is the column index.

C. Example
An RD system with the chemical species and reactions intro-

duced in Subsection II B admits only one conservation law (see the
stoichiometric matrix in Fig. 1), i.e.,

(28)

FIG. 3. Illustration of the sequences of reactions transferring the same moiety from
a potential chemostat to a force chemostat (for an RD system with the chemical
species and reactions introduced in Subsection II B). (a) When only the species
Y1 and Y2 are chemostatted, the moiety can be injected into the RD system by a
chemostat as the species Y1, transferred via the sequence of reaction {1,−2} to
the species Y2, and finally extracted from the RD system by a different chemostat
as the species Y2. (b) When only the species Y1 and Y3 are chemostatted, the
moiety can be injected into the RD system by a chemostat as the species Y1,
transferred via the sequence of reaction {1,−3} to the species Y3, and finally
extracted from the RD system by a different chemostat as the species Y3. Note
that when all three species {Y1, Y2, Y3} are chemostatted, the same moiety can
be transferred between each pair of chemostats.

This physically means that all species {X1, Y1, Y2, Y3} are made
of the same atoms, namely, the same moiety. Therefore, L[c]
= ∫V dr (cX1(r) + cY1(r) + cY2(r) + cY3(r)) is conserved if no
species are chemostatted. By chemostatting just one of the species
{Y1, Y2, Y3}, the conservation law is broken. Hence, any of the
species {Y1, Y2, Y3} can be chosen as a potential species. We
choose Y1. By chemostatting another species, for instance, Y2, no
conservation law is broken. Hence, Y2 is a force species and the same
moiety is exchanged between two different chemostats as illustrated
in Fig. 3. Note that this implies that the matrix with entries {ℓλb

yp} has
just one entry corresponding to ℓλb

Y1
= 1 and that the conservation

law in Eq. (28) is already written in the representation given in
Eq. (24).

IV. THERMODYNAMICS
We now develop a nonequilibrium thermodynamic theory for

open RD systems of interacting chemical species undergoing the RD
dynamics (15) by combining the thermodynamics of noninteracting
(i.e., ideal) RD systems10,11 and interacting (i.e., non-ideal) CRNs.35

A. Nonequilibrium free energy
Nonequilibrium thermodynamics presumes that all degrees

of freedom other than concentration fields are equilibrated
(e.g., the temperature T and the volume V are fixed, while the fields
responsible for the interactions, e.g., electrostatic fields, relax instan-
taneously to mean-field values depending on the concentration fields
only). In this framework, the nonequilibrium Helmholtz free energy
F[c] of RD systems can be specified by its equilibrium form, but as a
functional of the nonequilibrium concentration fields. Furthermore,
F[c] can always be written as the sum of an ideal and a non-ideal
contribution,

F[c] = Fid
[c] + Fni

[c]. (29)

Here, the ideal term Fid
[c] is the ideal solution Helmholtz free

energy, while the non-ideal term Fni
[c] accounts for the interactions

between the chemical species.
The free energy contribution of each chemical species is

specified by the chemical potential as

μi(c(r)) =
δF[c]
δci(r)

= μid
i (ci(r)) + RT ln γi(c(r)), (30)

where μid
i (ci(r)) is the ideal chemical potential,

μid
i (ci(r)) = μi

○ + RT ln ci(r), (31)

with μi
○ being the standard chemical potential, R being the gas con-

stant, and γi(c(r)) being the activity coefficient accounting for the
interactions,

RT ln γi(c(r)) =
δFni
[c]

δci(r)
. (32)

Note that the ideal free energy Fid
[c] reads10,11

Fid
[c] =∑

i
∫

V
dr (μid

i (ci(r)) − RT)ci(r). (33)
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B. Thermodynamic consistency of the RD dynamics
We start by introducing the entropy production rate as

Σ̇[c] ≡ Σ̇rct[c] + Σ̇dff[c], (34)

that quantifies the dissipation resulting from the changes in chemi-
cal potentials caused by the two types of processes occurring in the
system, namely, reactions and diffusion,

TΣ̇rct[c] ≡ −∑
i
∑
ρ>0
∫

V
dr μi(c(r))Si,ρjρ(c(r)), (35a)

TΣ̇dff[c] ≡ −∑
i
∫

V
dr ∇μi(c(r)) ⋅ J i(c(r)). (35b)

The central assumption ensuring thermodynamic consistency
of the RD dynamics is that the reaction fluxes ω±ρ(c(r)) satisfy the
local detailed balance condition,

RT ln
ωρ(c(r))

ω−ρ(c(r))
= −
⎛

⎝
∑

x
μx(c(r))Sx,ρ +∑

y
μy(c(r))Sy,ρ

⎞

⎠
, (36)

resulting from the macroscopic limit43 of the local detailed bal-
ance condition of stochastic thermodynamics47 when applied to
CRNs.46,48 We further assume that the diffusion current J i(c(r)) of
each species is treated within a linear regime and expressed as

J i(c(r)) = −∑
j

Oi,j(c(r))∇μj(c(r)), (37)

where {Oi,j(c(r))} are the entries of the positive-definite Onsager
matrix O(c(r)).49 Using these two assumptions in Eqs. (36) and
(37), we see that the two entropy production rates in Eq. (35) can
be rewritten in a manifestly non-negative form,

TΣ̇rct[c] = ∫
V

drRT∑
ρ>0

jρ(c(r)) ln
ωρ(c(r))

ω−ρ(c(r))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡Tσ̇rct(r)≥0

≥ 0, (38a)

TΣ̇dff[c] = ∫
V

dr∑
i,j
∇μi(c(r)) ⋅Oi,j(c(r))∇μj(c(r))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡Tσ̇dff(r)≥0

≥ 0, (38b)

where the equality sign is achieved only at equilibrium (17).
The change in free energy (29) in closed RD systems, using

Eq. (15) [when Ii(r) = 0∀i] and integrating by parts, gives the
second law of thermodynamics for closed RD systems,

dtF[c] = −TΣ̇[c] ≤ 0. (39)

With the additional assumption that the free energy in Eq. (29) is
lower bounded, F[c] becomes a thermodynamic potential acting as
a Lyapunov function of the RD dynamics (15). This ensures ther-
modynamic consistency, namely, closed RD systems always relax
toward an equilibrium steady state.

Remark. In Eqs. (38a) and (38b), we introduced the densities
of reaction σ̇rct(r) and diffusion σ̇dff(r) entropy production rate,

respectively. They are non-negative for every r ∈ V and vanish only
at equilibrium (17). The density of reaction entropy production rate
can be also split into the non-negative contribution of each reaction
σ̇ρ(r) ≥ 0: σ̇rct(r) = ∑ρ>0 σ̇ρ(r).

Remark. The expressions of entropy production rates in
Eqs. (38a) and (38b) together with the local detailed balance condi-
tion (36) and O(c(r)) being a positive-definite matrix imply that the
thermodynamic equilibrium conditions, Σ̇rct[ceq] = 0 and Σ̇dff[ceq]

= 0, are equivalent to

∑
i

μi(ceq(r))Si,ρ = 0, (40a)

∇μi(ceq(r)) = 0, (40b)

for all r ∈ V , for all ρ ∈ R, and for all i ∈ S. The equilibrium con-
ditions in Eq. (40) can also be derived by minimizing the free energy
(29) as done in Appendix A.

C. Chemostats
Thermodynamically, chemostats control the chemical poten-

tials μy(c(r)) of the chemostatted species in every point of space
r ∈ V , which can, thus, be treated as (in general, r- and time-
dependent) control parameters, i.e., {μy(r)}. In ideal RD systems,
where the chemical potentials are given in Eq. (31), chemostats
control the concentration fields of the chemostatted species too:
cy(r) = exp((μy(r) − μy

○)/RT). The exchange current Iy(r) in
Eq. (15) represents the physical mechanism implementing this
control. In non-ideal RD systems, where the chemical poten-
tials are given in Eq. (30), controlling the chemical potentials
of the chemostatted species does not univocally determine their
concentrations because of the interactions.35

D. Second law for open RD systems
Using the expression for the entropy production rate in

Eq. (34), together with the splitting of the conservation laws in bro-
ken and unbroken as well as the splitting of the chemostatted species
into potential and force species, the second law of thermodynamics
for open RD systems can now be rewritten as

TΣ̇[c] = −dt F[c] + Ẇnc[c] + Ẇdriv[c] ≥ 0. (41)

This can be checked by direct substitution of the different terms
on the right-hand side that we now define together with the RD
equation (15).

The semigrand Helmholtz free energy F[c] is the proper
thermodynamic potential of open RD systems. It reads

F[c] = F[c] −∑
yp

μref
yp Myp[c] (42)

and is obtained, in analogy to equilibrium thermodynamics when
passing from the canonical to the grand canonical ensembles, from
the Helmholtz free energy (29) by removing the energetic contri-
bution of the matter exchanged with the chemostats. The latter
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accounts for the abundances of the moieties {Myp[c]}, given in
Eq. (25), times a reference value of chemical potentials of the poten-
tial species {μref

yp }, controlled by the corresponding chemostats. If
the potential chemostats impose different values of the chemical
potentials {μyp(r)} in different r ∈ V , then the reference chemi-
cal potential {μref

yp } can be chosen arbitrarily among these values.
This is equivalent to choosing a reference equilibrium steady state
ceq(r) satisfying F[ceq] ≤ F[c] as discussed in Appendix B.

The nonconservative work rate

Ẇnc[c] = ∫
V

dr ∑
y

f nc
y (r)Iy(r)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡ẇnc(r)

(43)

quantifies the energetic cost for sustaining fluxes of the same moiety
between chemostats with different chemical potentials by means of
the nonconservative forces,

f nc
y (r) ≡ μy(r) −∑

yp ,λb

μref
yp ℓ

yp

λb
ℓλb

y . (44)

These forces emerge in two cases. When μyp(r) ≠ μref
yp (because

∑λb
ℓ

yp

λb
ℓλb

yp
′ = 𝟙yp ,yp

′ ), the forces f nc
yp (r) correspond to diffusive

forces that can be present even in the absence of chemical reac-
tions.10 They arise because the potential chemostats yp impose
values of the chemical potential that are different from the ref-
erence equilibrium ones μref

yp (see Appendix B). When μy f (r)
≠ ∑yp ,λb

μref
yp ℓ

yp

λb
ℓλb

y f , the forces f nc
y f (r) correspond to chemical forces

that can also be present in homogeneous systems.35 They arise
because force chemostats yf impose chemical potentials that are dif-
ferent from the one they would have if all reactions were equilibrated
∑yp ,λb

μref
yp ℓ

yp

λb
ℓλb

y f (see Appendix B).
The driving work rate reads

Ẇdriv[c] = −∑
yp

(dtμref
yp ) Myp[c] (45)

and quantifies the energetic cost of the time-dependent changes of
the reference chemical potentials {μref

yp } (with yp ∈ Yp) defining the
reference equilibrium to which the open RD system would relax if
the nonconservative forces vanished.

Physically, the second law (41) expresses (and quantifies) the
different sources of free energy [on the right-hand side of Eq. (41)]
that can balance dissipation [on the left-hand side of Eq. (41)]
and, hence, maintain open RD systems out of equilibrium. Let us
illustrate this point by considering three simple cases.

First, when the chemical potentials of the chemostatted species
are independent of time and such that f nc

y (r) = 0 (which also implies
homogeneous chemostatting), both work contributions vanish and
the second law (41) reduces to dt F[c] = −TΣ̇[c] ≤ 0. This, together
with F[c] being lower bounded (as shown in Appendix B), implies
that the RD system relaxes to equilibrium while minimizing F[c]
that serves as a Lyapunov function. This RD system is, therefore,
detailed balanced despite being open. As shown in Appendix B,
the specific equilibrium steady state ceq(r) to which the RD system

relaxes is defined by the chemical potentials {μref
yp } and the abun-

dances {Lλu[c]}. If self-organized structures emerged, i.e., the con-
centrations ceq(r) are not homogeneous, they would be sustained by
a passive mechanism that does not dissipate.

Second, when the chemical potentials of the chemostatted
species are dependent on time but f nc

y (r) = 0 still holds, only the
nonconservative work rate vanishes from the second law (41),
namely, TΣ̇[c] = −dt F[c] + Ẇdriv[c] ≥ 0, and the RD system is still
detailed balanced. Indeed, if the time dependence is very slow,
the RD system will quasi-statically follow the changing equilibrium
state. For faster time dependence, the RD system will be prevented
from reaching equilibrium.

Third, when the chemical potentials of the chemostatted species
are independent of time but f nc

y (r) ≠ 0, detailed balance is broken
and the second law (41) reduces to TΣ̇[c] = −dt F[c] + Ẇnc[c] ≥ 0.
If the RD system eventually reaches a nonequilibrium steady state,
the second law is further reduced to TΣ̇[css] = Ẇnc[css] ≥ 0. In this
case, Ẇnc[css] quantifies the net free energy intake by the open RD
system that is dissipated to maintain the system in a nonequilibrium
steady state.

E. Example
We consider the RD system with the chemical species and reac-

tions introduced in Subsection II B and with the chemostats impos-
ing r-dependent chemical potentials μY1(r), μY2(r), and μY3(r). We
choose Y1 as a potential species (as discussed in Subsection III C)
and one of the values of μY1(r) as a reference chemical potential
μref

Y1
. The corresponding nonconservative work rate [whose general

expression is given in Eq. (43)] specializes into the sum of three
contributions,

Ẇnc[c] = ∫
V

dr (μY1(r) − μref
Y1)IY1(r)

+ ∫
V

dr (μY2(r) − μref
Y1)IY2(r)

+ ∫
V

dr (μY3(r) − μref
Y1)IY3(r), (46)

where we used the broken conservation law in Eq. (28). The first
contribution results from applying different chemical potentials to
the species Y1. The second (respectively, third) contribution results
from applying different chemical potentials to the same moiety car-
ried by both the species Y1 and Y2 (respectively, Y3) as illustrated in
Fig. 3.

Note that the nonconservative work in Eq. (46) is not the
excess work introduced in Refs. 50 and 51, even though the two
expressions might look similar. The difference between the actual
chemical potential and a reference one features both expressions.
This reference chemical potential is the steady state one in the excess
work, while it takes the equilibrium value imposed by the potential
chemostats in the nonconservative work. Furthermore, also a cur-
rent multiplying the difference between chemical potentials features
the expression of both works. This current is the total time deriva-
tive of a species concentration in the excess work, while it is the
exchange current with the chemostat in the non-nonconservative
work. Indeed, the excess work is not directly related to the evolution
of the semigrand free energy (42) via the second law (41), but rather
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to the evolution of the kinetic potential in Eq. (71) in homogeneous
systems.

V. THERMODYNAMIC PROPERTIES OF ACTIVE
SELF-ORGANIZATION—EXACT RESULTS

The RD dynamics might reach a steady state where the chem-
ical species are inhomogeneous. We now use the thermodynamic
theory introduced in Sec. IV to prove that for two classes of CRNs,
namely, pseudo detailed balanced (Subsection V A) and complex
balanced (Subsection V B) discussed in Fig. 4, stationary concen-
tration profiles are determined by the minimization of appropriately
constructed kinetic potentials acting as Lyapunov functions, when
the chemical potentials {μy} of the chemostatted species are homo-
geneous and constant in time. Furthermore, for both classes of
CRNs, diffusion processes always equilibrate, which implies that
the chemical potentials become homogeneous at a steady state.
In addition, for pseudo-detailed CRNs only, the transient dynam-
ics and steady-state concentration fields can be exactly simulated
also in reaction–diffusion systems relaxing toward equilibrium with
appropriately constructed chemical potentials.

The proofs of this result are derived in Subsections V A and V B
by assuming that the chemostatted species are ideal, i.e., they do not
interact with the internal species, for the sake of simplicity. We can,
thus, treat both {μy} and {cy} [related via Eq. (31)] as control para-
meters. We generalize our result to non-ideal chemostatted species
in Subsection V C.

A. Pseudo detailed balanced CRNs
We define CRNs as pseudo detailed balanced when their stoi-

chiometric matrix for the internal species and lumped reactions does
not admit any right-null eigenvector. Namely, there is no {ϕε} such
that

∑
ε>0

Sx,ε ϕε = 0. (47)

We now show that the RD dynamics of pseudo detailed balanced
CRNs is driven by the minimization of a kinetic potential and
relaxes to a steady state css(r) characterized by a vanishing diffusion

FIG. 4. The gray box represents the set of all possible CRNs endowed with all
possible reaction fluxes. The blue box, a subset of the gray box, represents the set
of all possible complex balanced CRNs endowed with all possible reaction fluxes.
Pseudo detailed balanced CRNs are always a subset of complex balanced CRNs.
In Sec. V, we consider pseudo detailed balanced CRNs with reaction fluxes of gen-
eral form (green oval) and complex balanced CRNs with Arrhenius-like reaction
fluxes (red oval).

entropy production rate, i.e., Σ̇dff[css] = 0, independently of whether
the concentration fields are homogeneous or inhomogeneous.

Assumption. We consider reaction fluxes of the general
form as

ωρ(c(r)) = kρωin(c(r),{νx,ρ})ωch({cy},{νy,ρ}), (48)

namely, the concentration dependence of each flux ωρ(c(r)) is uni-
vocally determined by the stoichiometric coefficients via the unspec-
ified functions ωin(c(r),{νx,ρ}) and ωch({cy},{νy,ρ}). The latter
depends only on the concentrations of chemostatted species because
they are assumed to be ideal. Here, kρ is an unspecified constant
parameter. For example, mass-action fluxes,52,53 and Arrhenius-like
fluxes satisfy Eq. (48). Note that, while the latter read

ωρ(c(r)) = Aρ e
∑x μx(c(r))νx,ρ

RT e
∑y μy νy,ρ

RT , (49)

with Aρ = A−ρ being a constant parameter, the fluxes in Eq. (48) can
in general account for a concentration-dependent Aρ.

Proof. We start by using Sx,ρ = Sx,ε ∀ρ ∈ Rε to rewrite the con-
tribution due to the chemical reactions in Eq. (15) for the internal
species as

∑
ρ>0

Sx,ρ jρ(c(r)) =∑
ε>0

Sx,ε ĵε(c(r)), (50)

with

ĵε(c(r)) = ∑
ρ∈Rε

{ωρ(c(r)) − ω−ρ(c(r))} (51)

being the lumped reaction ε net current. By writing now each
reaction flux ωρ(c(r)) as the product between its symmetric part
sρ(c(r)) ≡

√
ωρ(c(r))ω−ρ(c(r)) = s−ρ(c(r)) and its antisymmetric

part
√

ωρ(c(r))/ω−ρ(c(r)) specified by the local detailed balance
condition (36), ĵε(c(r)) becomes

ĵε(c(r)) = aε(c(r)){e−
∑x μx(c(r))Sx,ε

2RT − bεe−
∑x μx(c(r))Sx,−ε

2RT }, (52)

where we factorized

aε(c(r)) = ∑
ρ∈Rε

sρ(c(r))e−
∑y μy Sy,ρ

2RT ≥ 0, (53)

and the constant quantity is

bε =
a−ε(c(r))
aε(c(r))

=
∑ρ∈Rε

sρ(c(r))e−
∑y μy Sy,−ρ

2RT

∑ρ∈Rε
sρ(c(r))e−

∑y μy Sy,ρ
2RT

≥ 0. (54)

This results from the fact that (i) the chemical potentials {μy},
and the corresponding concentrations {cy}, are homogeneous and
constant, and (ii) the fluxes in sρ(c(r)) are univocally deter-
mined by the stoichiometric coefficients according to Eq. (48) with
νx,ρ = νx,ε ∀ρ ∈ Rε.
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We now use the pseudo detailed balanced condition. Since
there are no right-null vectors of Sx,ε, we can always introduce the
constant coefficients {Δx} such that

ln bε =∑
x

Δx Sx,ε/RT. (55)

Indeed, given the nx × ne matrix ŜX whose entries are {Sx,ε} with
x ∈ X, E ∋ ε > 0, rank(ŜX) = ne. Therefore, the set of internal species
can always be split into two disjoint sets XI and XD such that the
matrix ŜXI (with entries {Sx,ε} with x ∈ XI and E ∋ ε > 0) is square
and invertible. This leads to

Δx = RT∑
ε>0

ln bε(Ŝ−1
XI )ε,x for x ∈ XI , (56a)

Δx = 0 for x ∈ XD, (56b)

and allows us to write the lumped reaction ε net current (52) as

ĵε(c(r)) = ω̂ε(c(r)) − ω̂−ε(c(r)). (57)

Here, we introduced the lumped reaction ±ε fluxes that read

ω̂±ε(c(r)) ≡ a∣ε∣(c(r))e
∑x Δx Sx,∣ε∣

2RT e−
∑x μ̂ x(c(r))Sx,±ε

2RT , (58)

with ∣ − ε∣ = ∣ε∣ = ε > 0, and satisfy a pseudo local detailed balance
condition as

RT ln
ω̂ε(c(r))

ω̂−ε(c(r))
= −∑

x
μ̂x(c(r))Sx,ε, (59)

with the chemical potentials

μ̂x(c(r)) ≡ μx(c(r)) + Δx. (60)

Note that Eq. (60) only implies a shift of the standard chemical
potentials of the internal species {μx

○}.
Up until now, we just re-wrote the lumped reaction net current

ĵε(c(r)) entering the RD equation (15) via Eq. (50) as in Eq. (57).
However, this rewriting allows us to show that the potential Fpdb[c],
obtained from the free energy (29) of the RD system after apply-
ing the shift of the chemical potentials in Eq. (60), decreases in time
during RD dynamics (15). Indeed, using dtcy = 0, its time derivative
reads

dtFpdb[c] = −T ˆ̇Πrct[c] − TΣ̇dff[c] ≤ 0, (61)

where Σ̇dff[c] ≥ 0 is given in Eq. (38b) (since ∇μy = 0) and, using
Eq. (59),

T ˆ̇Πrct[c] = RT∑
ε>0
∫

V
dr ĵε(c(r)) ln

ω̂ε(c(r))
ω̂−ε(c(r))

≥ 0. (62)

This, together with the fact that Fpdb[c] is lower bounded (since F[c]
is lower bounded by assumption, see Subsection IV B), implies that
the RD dynamics (15) of pseudo detailed balance CRNs must relax
toward a steady state css(r) satisfying

ˆ̇Πrct[css] = 0 and Σ̇dff[css] = 0, (63)

or equivalently

∑
x
(μx(css(r)) + Δx)Sx,ε = 0 and J i(css(r)) = 0, (64)

for all ε > 0 and for all i. ◻

Let us now discuss the meaning and implications of Eqs. (63)
and (64).

First, the mechanism underpinning the dynamics of pseudo
detailed balanced CRNs as well as the emergence of self-organized
dissipative structures is the minimization of Fpdb[c], which plays
the role of a Lyapunov function. However, Fpdb[c] is not a ther-
modynamic potential, but rather a kinetic potential: the chemical
potentials (60) encode kinetic properties, namely, the symmetric
part of the reaction fluxes {sρ(c(r))} via {Δx} [see Eqs. (55) and
(54)].

Second, Eqs. (63) and (64) physically mean that diffusion pro-
cesses are equilibrated at a steady state. This, together with Eq. (40b)
and the fact that μ̂x(c(r)) and μx(c(r)) are related through the
constant coefficient Δx, see Eq. (60), implies

∇μi(css(r)) = 0 ∀i, (65)

namely, the chemical potentials of all species are homogeneous.
Third, spatial self-organization at steady state leads, in gen-

eral, to inhomogeneous reaction fluxes. Indeed, as long as reaction
fluxes do not exclusively depend on the chemical potentials, homo-
geneous chemical potentials do not imply homogeneous reaction
fluxes. However, this is not the case for, for example, Arrhenius-like
reaction fluxes (49) which become homogeneous when the chemical
potentials are homogeneous (see also Subsection VI B).

Fourth, by plugging J i(css(r)) = 0 into Eq. (15), we obtain that
the concentration fields css(r) are also a steady state of the chemical
dynamics for the internal species in every point r ∈ V , i.e.,

∑
ρ>0

Sx,ρ jρ(css(r)) = 0. (66)

Since both diffusion and chemical reactions are at a steady state, no
oscillations or moving structures (e.g., chemical waves) can emerge.

Fifth, css(r) is not, in general, an equilibrium steady state:
diffusion processes are equilibrated, i.e., Σ̇dff[css] = 0, but chemical
reactions are not. Indeed, ˆ̇Πrct[css] is not the thermodynamic reac-
tion entropy production rate (35a) and ˆ̇Πrct[css] = 0 in Eq. (63) does
not imply Σ̇rct[css] = 0. The expressions of ˆ̇Πrct[css] in Eq. (62) and
Σ̇rct[css] in Eq. (38a) have a similar structure, given in terms of the
lumped reaction fluxes ω̂ε and the actual reaction fluxes ωρ, respec-
tively. Yet, ˆ̇Πrct[css] does not resolve the dissipation of the single
reactions ρ ∈ Rε in the lumped reaction ε, and it is always a lower
bound of the Σ̇rct[css] (because of the log sum inequality).

Sixth, by re-writing the lumped reaction net current ĵε(c(r))
according to Eq. (57) with fluxes satisfying the pseudo local detailed
balance condition (59), the RD dynamics (15) for the internal species
is mathematically equivalent to the RD dynamics of a detailed bal-
anced (and hence driven by purely passive mechanisms) RD system.
For this reason, we named this kind of CRNs pseudo detailed bal-
anced. Furthermore, Eq. (64) implies that (μx(css(r)) − Δx) can be
written as a linear combination of unbroken conservation laws sim-
ilar to what happens at equilibrium where the equilibrium chemical
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potentials can be written as a linear combination of conservation
laws [see Eq. (40a) and Appendix A].

We conclude this discussion by showing that the lumped reac-
tion net currents ĵε(c(r)) cannot, in general, be written as in Eq. (57)
when CRNs are not pseudo detailed balanced. Namely, there are
no {Δx} satisfying Eq. (55). Indeed, if there were, the existence of
a right-null vector of Sx,ε as defined in Eq. (47) would imply

∑
ε>0

ln bεϕε = 0. (67)

However, Eq. (67) cannot hold in general since {bε} is defined
using the symmetric part of the reaction fluxes so encoding kinetic
properties, while {ϕε} is derived from the stoichiometric matrix so
encoding topological properties only.

In summary, the nonequilibrium dynamics of pseudo detailed
balanced CRNs, as well as the resulting self-organized structures, can
exactly be obtained by passive mechanisms too.

B. Complex balanced CRNs
CRNs are said to be complex balanced54 when there exists

a homogeneous steady state ch
ss of the chemical dynamics, i.e.,

∑ρ>0 Sx,ρ jρ(ch
ss) = 0, such that the sum of the net currents entering

into a complex k equals the sum of the net currents exiting from it,
namely,∑ρ>0 ∂k,ρ jρ(ch

ss) = 0 ∀k, or equivalently

∑
ρ

𝟙k,k(ρ)jρ(ch
ss) = 0 ∀k. (68)

Deficiency-zero CRNs, where every cycle (i.e., every right-null eigen-
vector of the substoichiometric matrix for the internal species) is also
a right-null eigenvector of the incidence matrix, are always complex
balanced. If the deficiency is greater than zero, then CRNs are, in
general, not complex balanced (except for a set of kinetic parameters
of null measure41,55).

We now show that the RD dynamics of complex balanced
CRNs is driven by the minimization of a kinetic potential and relaxes
to a steady state css(r) characterized by a vanishing diffusion entropy
production rate, i.e., Σ̇dff[css] = 0, independently of whether the con-
centration fields are homogeneous or inhomogeneous. We do so by
generalizing a previous proof for the existence of a Lyapunov func-
tion for homogeneous complex balanced CRNs in dilute solutions
undergoing mass-action kinetics.56

Assumption. We consider reaction fluxes of Arrhenius-like
form (49) and we rewrite them as

ωρ(c(r)) = aρ e
∑x μx(c(r))νx,ρ

RT , (69)

with aρ ≡ Aρ exp((∑yμyνy,ρ)/RT) ≠ a−ρ being a constant parameter
accounting (also) for the chemostatted species. Note that, since
νx,k(ρ) = νx,ρ by definition of complexes, Eq. (68) becomes

∑
ρ

𝟙k,k(ρ){aρ − a−ρe
∑x μx(ch

ss)Sx,ρ
RT } = 0, (70)

when endowed with Arrhenius-like reaction fluxes (69).

Proof. We start by introducing the potential

Fcb[c] ≡ F[c] −∑
x

μx(ch
ss)∫

V
dr cx(r), (71)

and then we show that Fcb[c] acts as a Lyapunov function of the RD
dynamics (15) with respect to a steady state characterized by homo-
geneous chemical potentials. Note that the potential (71) is obtained
from the free energy (29) via a shift of the standard chemical
potentials of the internal species {μx

○} given by

Δx = −μx(ch
ss), (72)

like what is done in Eq. (60) for pseudo detailed balanced CRNs.
By using Eqs. (15) and (69), and dtcy = 0, the time derivative of

Fcb[c] reads

dtFcb[c] = −TΠ̇cb[c] − TΣ̇dff[c], (73)

where Σ̇dff[c] ≥ 0 is given in Eq. (38b) (since∇μy = 0), and

TΠ̇cb[c] ≡ −∫
V

dr∑
ρ, x
{(μx(c(r)) − μx(ch

ss))Sx,ρaρe
∑x μx(c(r))νx,ρ

RT }.

(74)

We have now to show that −Π̇cb[c] ≤ 0. By using (i) Eq. (2),
(ii) multiplying and dividing by exp (∑x μx(ch

ss)νx,ρ/RT), and (iii)
ea
(b − a) ≤ eb

− ea for any real number a and b (where the equality
sign is achieved if and only if a = b), we obtain

−
Π̇cb[c]

R
≤ ∫

V
dr∑

ρ
{e

∑x (μx(c(r))−μx(ch
ss))νx,−ρ

RT

− e
∑x (μx(c(r))−μx(ch

ss))νx,ρ
RT }aρe

∑x μx(ch
ss)νx,ρ

RT , (75)

where the equality sign is achieved if and only if (μx(c(r))
− μx(ch

ss))Sx,ρ = 0. Since ∑ρ = ∑k∑ρ 𝟙k,k(ρ) and νx,k(ρ) = νx,ρ by
definition of complexes, the two integrands in Eq. (75) can be
rewritten as

∑
k

e
∑x μx(c(r))νx,k

RT ∑
ρ

𝟙k,k(ρ)a−ρe
∑x μx(ch

ss)Sx,ρ
RT , (76a)

∑
k

e
∑x μx(c(r))νx,k

RT ∑
ρ

𝟙k,k(ρ)aρ, (76b)

respectively, and hence, the r.h.s. of Eq. (75) reads

− ∫
V

dr∑
k

e
∑x μx(c(r))νx,k

RT ∑
ρ

𝟙k,k(ρ){aρ − a−ρe
∑x μx(ch

ss)Sx,ρ
RT } = 0, (77)

because of Eq. (70). Thus,

dtFcb[c] ≤ 0. (78)

This, together with the fact that Fcb[c] is lower bounded (since F[c]
is lower bounded by assumption, see Subsection IV B), implies that
the RD dynamics (15) of complex balance CRNs must relax toward
a steady state css(r) satisfying
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Π̇cb[css] = 0 and Σ̇dff[css] = 0, (79)

or equivalently

∑
x
(μx(css(r)) − μx(ch

ss))Sx,ρ = 0 and J i(css(r)) = 0, (80)

for all ρ > 0 and for all i. ◻

As we did in Subsection V A, we now further discuss the con-
ditions, the physical meaning, and the implications of Eqs. (79) and
(80).

First, as for pseudo detailed balanced CRNs, the mechanism
underpinning the dynamics of complex balanced CRNs as well as
the emergence of self-organized dissipative structures is the mini-
mization of Fcb[c] in Eq. (71), which plays the role of a Lyapunov
function. However, Fcb[c] is not a thermodynamic potential, but
rather a kinetic potential: it encodes kinetic properties via the steady
state concentrations in {μx(ch

ss)} [see Eq. (71)].
Second, as for pseudo detailed balanced CRNs, Eqs. (79) and

(80) physically mean that diffusion processes are equilibrated at a
steady state. This, together with Eq. (38b), implies that the chemical
potentials of all species are homogeneous.

Third, spatial self-organization at a steady state does not lead
to inhomogeneous reaction fluxes. Indeed, homogeneous chemical
potentials at steady state, together with reaction fluxes of Arrhenius-
like form (69), imply that the reaction fluxes are homogeneous too,
unlike for pseudo detailed balanced CRNs.

Fourth, as for pseudo detailed balanced CRNs, by plugging
J i(css(r)) = 0 into Eq. (15), we obtain that both diffusion processes
and chemical reactions are at steady state in every point r ∈ V .
Consequently, no oscillations or moving structures (e.g., chemical
waves) can emerge.

Fifth, as for pseudo detailed balanced CRNs, css(r) is not, in
general, an equilibrium steady state even if the diffusion processes
are equilibrated, i.e., Σ̇dff[css] = 0.

Sixth, Eq. (80) implies that (μx(css(r)) − μx(ch
ss)) can be writ-

ten as a linear combination of unbroken conservation laws similarly
to what happens at equilibrium where the equilibrium chemical
potentials can be written as a linear combination of conservation
laws [see Eq. (40a) and Appendix A].

In summary, the nonequilibrium dynamics of complex bal-
anced CRNs, as well as the resulting self-organized structures,
shares important features with passive mechanisms, e.g., it is driven
by the minimization of (appropriately constructed) potentials and
diffusion processes equilibrate.

C. Generalization to non-ideal chemostatted species
We show here that the results of Subsections V A and V B

can be generalized to the case with non-ideal chemostatted species.
Namely, when the chemical potentials {μy(c(r))} [given in Eq. (30)
and not in Eq. (31)] are still homogeneous and constant in time, i.e.,

μy(c(r)) = μy ∀r and ∀t, (81)

but the concentrations {cy(r)} are not. Note that this implies that
the exchange currents {Iy(r)} in Eq. (15) represent the mechanisms
ensuring that Eq. (81) is satisfied, but ∂tcy(r) ≠ 0 in general.

To do so, we recognize that the exchange currents {Iy(r)}
can always be represented as the (net) result of exchange reactions
ρy ∈ Rex = {±1,±2, . . . ,±ny} between the species y ∈ Y and ideal
chemostatted species ỹ ∈ Ỹ according to

Zy
ρy
ÐÐÐ⇀↽ÐÐÐ
−ρy

Zỹ. (82)

Indeed, as long as the exchange reactions ρy ∈ Rex are fast enough
(compared to the time scale of the other reactions ρ ∈ R and of the
diffusion processes), they are always equilibrated and, consequently,
Eq. (81) is satisfied (with μy playing the role of the chemical poten-
tial of ỹ). This implies that RD systems with non-ideal chemostatted
species are equivalent to RD systems with X⋃Y⋃ Ỹ species (where
X⋃Y are internal species, and Ỹ are ideal chemostatted species) and
R⋃ Rex reactions. As proven in Subsections V A and V B, the latter
will relax to a nonequilibrium steady state with homogeneous chem-
ical potentials (i.e., where diffusion processes have equilibrated) if
their CRNs are either pseudo detailed balanced or complex balanced
and, therefore, also the former will relax to the same steady state.
Note that the CRN topology of RD systems with X⋃Y⋃ Ỹ species
might be different from the one of the original RD systems because
of the introduction of the exchange reactions (82).

D. Emergence of spatial structures by diffusive
processes

In pseudo detailed balanced and complex balanced CRNs, the
steady state spatial structure css(r) is determined by the minimiza-
tion of appropriately constructed kinetic potentials obtained by a
simple shift of the standard chemical potentials of the internal
species {μx

○}. This, together with the equilibration of the diffusion
processes at steady state, implies that the chemical reactions are
the mechanism determining the total abundances of the chemical
species, i.e., ∫V dr css(r), while diffusion is the mechanism determin-
ing the spatial structures, i.e., the r-dependence of css(r). Indeed, as
proved in Appendix C, the steady-state concentration profiles css(r)
of pseudo detailed balanced and complex balanced CRNs can also
be obtained by minimizing the free energy of pure diffusion, F[c]
in Eq. (29), when the total abundances are set to values equal to
∫V dr css(r).

In CRNs that are neither pseudo detailed balanced nor complex
balanced, this differentiation between the roles of chemical reac-
tions and diffusion no longer holds in general and both mechanisms
contribute to determining the spatial structures.

E. Final comment
We note that the equilibration of diffusion processes in com-

plex balanced CRNs endowed with Arrhenius-like fluxes was also
recently derived in Ref. 57 with a different approach. Let us now
stress the differences between our work and Ref. 57. First, our deriva-
tion is a closed derivation at the deterministic level of description
of the RD dynamics. Their derivation is based on the stochastic
dynamics of complex balanced CRNs. Second, our derivation is con-
sistent with nonlocal terms [e.g., of the form ∇cx(r) ⋅ Kx,x′∇cx′(r),
see Eq. (83) in Sec. VI] in the non-ideal free energy. Their deriva-
tion determines the Lyapunov function of the reaction dynamics
[the equivalent of Fcb[c] in Eq. (71)] by taking the macroscopic limit
of the steady-state rate function for homogeneous CRNs. Hence,
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their Lyapunov function can consistently include only local terms
[e.g., of the form cx(r)Mx,x′cx′(r), see Eq. (83) in Sec. VI] in the
non-ideal free energy (although they use nonlocal terms in one of
the examples). Third, our derivation can be applied to RD systems
with non-ideal chemostatted species (see Subsection V C). Their
derivation requires ideal chemostatted species.

VI. THERMODYNAMIC PROPERTIES OF ACTIVE
SELF-ORGANIZATION—NUMERICAL RESULTS

We now examine the thermodynamic properties (introduced
in Sec. IV) of specific RD systems. We first illustrate the exact results
obtained in Sec. V for pseudo detailed balanced CRNs and com-
plex balanced CRNs. We then examine a CRN that is neither pseudo
detailed balanced nor complex balanced. To do so, we will numeri-
cally simulate their RD dynamics (15) to determine the final steady
state css(r) starting from a homogeneous steady state ch

ss after the
concentration of each internal species x is perturbed with a Gaussian
white noise of zero average and (0.1 ∗ ch

x)
2 variance. We consider

RD systems in a two-dimensional space with periodic boundary
conditions. Simulations are performed using the py-pde package
developed in Ref. 58.

A. Model
We consider RD systems where the set of internal species

includes a nonreacting species, labeled nr in the following, while
the chemostatted species are assumed to be ideal, with homogeneous
and time-independent chemical potentials.

The non-ideal free energy, accounting for the interactions
between the internal species only, is assumed to have the following
form:

Fni
[c] =

RT
2 ∑x,x′

∫
V

dr [cx(r)Mx,x′cx′(r) +∇cx(r) ⋅ Kx,x′∇cx′(r)],

(83)

where {Mx,x′} and {Kx,x′} are the entries of the two (symmetric)
matrices M and K describing the mean-field molecular interac-
tions and the cost of forming interfaces, respectively. If Mx,x′ > 0
(respectively, Mx,x′ < 0), then M represents repulsive (respectively,
attractive) interactions between x and x′: large concentrations cx(r)
and cx′(r) in the same region increase (respectively, decrease) the
free energy, i.e., cx(r)Mx,x′cx′(r) > 0 ( respectively, cx(r)Mx,x′cx′(r)
< 0). Similarly, if Kx,x′ > 0 (respectively, Kx,x′ < 0), then K repre-
sents an energetic advantage (respectively, disadvantage) in dis-
tributing x and x′ in different regions: gradients ∇cx(r) and
∇cx′(r) with an opposite sign at the interface between a region
enriched in x and a region enriched in x′ decrease (respectively,
increase) the free energy, i.e.,∇cx(r) ⋅ Kx,x′∇cx′(r) < 0 (respectively,
∇cx(r) ⋅ Kx,x′∇cx′(r) > 0). Note that the non-ideal free energy in
Eq. (83) is consistent with the one used in Refs. 59 and 60 and cor-
responds to one introduced by Cahn and Hilliard1 if higher orders
in gradients are included. The corresponding chemical potentials of
the internal species are given by

μx(c(r)) = μx
○ + RT ln cx(r) + RT∑

x′
[Mx,x′cx′(r) − Kx,x′∇

2cx′(r)],

(84)

where we also used Eqs. (30) and (33). The chemical potentials of
the chemostatted species {μy} are treated as control parameter like
in Sec. V and are related to the corresponding concentrations {cy}

via Eq. (31).
Reaction fluxes are assumed to follow Arrhenius-like forms

given in Eq. (69). The entries of the Onsager matrix O(c(r)) in the
diffusion currents (37) are assumed to read

Oi,j(c(r)) = Dici(r)𝟙i,j , (85)

where Di is the diffusion coefficient of species i. Hence, the diffusion
currents for the internal species are given by

Jx(c(r)) = −Dxcx(r)∇μx(c(r)) ∀x ∈ X. (86)

B. Pseudo detailed balanced CRN
We consider an RD system with three internal species

{X1, X2, Xnr} and two chemostatted species {Y1, Y2} which are
interconverted via the reactions,

X1 + Y1
1

ÐÐÐ⇀↽ÐÐÐ
−1

X2 + Y2,

X1
2

ÐÐÐ⇀↽ÐÐÐ
−2

X2.
(87)

The CRN (87) has three complexes V1 = X1, V2 = X2, and V3 = Xnr,
and the corresponding graph of complexes reads

V1
1

ÐÐÐ⇀↽ÐÐÐ
−1

V2,

V1
2

ÐÐÐ⇀↽ÐÐÐ
−2

V2,
(88)

admitting only the lumped reaction from V1 to V2 and its backward
counterpart from V2 to V1. Hence, the stoichiometric matrix for the
internal species,

(89)

becomes the matrix

(90)

when considering the only lumped reaction. Since the matrix in
Eq. (90) does not admit any right-null eigenvector, the CRN (87)
is pseudo detailed balanced (see Subsection V A).

We solve the RD dynamics (15) when the mean-field molecu-
lar interactions and the cost of forming interfaces are given by the
following matrices:

(91)

The typical steady-state solution and its thermodynamic proper-
ties are shown in Fig. 5. We observe that the concentration fields
spatially organize [Fig. 5(a)] into a pattern that is qualitatively
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analogous to a complete phase separation obtained at equilibrium:
the species X2 accumulates in a single droplet. The chemical reac-
tions are, however, out of equilibrium, i.e., σ̇ss

rct(r) > 0 [see Fig. 5(b)],
even if the net current along the lumped reaction, namely, ĵ1(css(r))
= j1(css(r)) + j2(css(r)), vanishes as predicted in Subsection V A
[see Fig. 5(d)]. Furthermore, in agreement with our derivation
in Subsection V A, at steady state, diffusion processes are at
equilibrium, i.e., σ̇ss

dff(r) = 0, because the chemical potentials are
homogeneous [see Fig. 5(c)].

Note that the steady-state density of the reaction entropy
production rate in Fig. 5(b) is homogeneous because we used
reaction fluxes of Arrhenius-like forms, and therefore, the reac-
tion fluxes become homogeneous at steady state (as explained in
Subsection V A).

C. Complex balanced CRN
We consider an RD system with four internal species

{X1, X2, X3, Xnr} and two chemostatted species {Y1, Y2} that are
interconverted via the reactions as

X1 + Y1
1

ÐÐÐ⇀↽ÐÐÐ
−1

X2 + Y2,

X2
2

ÐÐÐ⇀↽ÐÐÐ
−2

X3,

X3
3

ÐÐÐ⇀↽ÐÐÐ
−3

X1.

(92)

FIG. 5. Steady state and corresponding thermodynamic properties of the pseudo
detailed balanced CRN (87). (a) Concentration field of X2. (b) Density of reac-
tion entropy production rate. (c) Difference between the chemical potential of
i ∈ {X1, X2} [labeled here μss

i (r)] and its chemical potential at the homoge-
neous steady state (labeled here μh

i ). (d) Net current of the lumped reaction,
i.e., ĵ1(css(r)) = j1(css(r)) + j2(css(r)). Simulation parameters in arbitrary
units: RT = 1, χ = 3, k1 = 0.1, k2 = 0.05, μ1

○ = 0, μ2
○ = −2, μY1

= 1, μY2
= 0,

Aρ = 1∀ρ, Dx = 1∀x, ch
1 = 0.087, ch

2 = 0.213, and ch
nr = 0.7.

The CRN (92) has four complexes V1 = X1, V2 = X2, V3 = X3, and
V4 = Xnr, and the corresponding graph of complexes reads

V1
1

ÐÐÐ⇀↽ÐÐÐ
−1

V2,

V2
2

ÐÐÐ⇀↽ÐÐÐ
−2

V3,

V3
3

ÐÐÐ⇀↽ÐÐÐ
−3

V1.

(93)

Since the substoichiometric matrix for the internal species

(94)

admits only one cycle that is also a right-null eigenvector of the
incidence matrix,

(95)

the CRN (92) is deficiency-zero [see Eq. (11)] and, therefore,
complex balanced (see Subsection V B).

We solve the RD dynamics (15) when the mean-field molecu-
lar interactions and the cost of forming interfaces are given by the
following matrices:

(96)

The typical steady-state solution and its thermodynamic properties
are shown in Fig. 6. As for the RD system in Subsection VI B, we
observe that the concentration fields spatially organize [Fig. 6(a)]
into a pattern that is qualitatively analogous to a complete phase
separation obtained at equilibrium: the species X2 accumulates in
a single droplet. The chemical reactions are, however, out of equi-
librium, i.e., σ̇ss

rct(r) > 0 [see Fig. 6(b)], while diffusion processes
are at equilibrium, i.e., σ̇ss

dff(r) = 0, since the chemical potentials
are homogeneous [see Fig. 6(c)] as predicted by our derivation in
Subsection VI B.

Furthermore, according to Eq. (80), the difference
(μx(css(r)) − μx(ch

ss)) for every internal species can be written
as a linear combination of unbroken conservation laws (defined in
Subsection III B). This implies that in general

(μX1(css(r)) − μX1(c
h
ss)) = (μX2(css(r)) − μX2(c

h
ss))

= (μX3(css(r)) − μX3(c
h
ss))

≠ (μXnr(css(r)) − μXnr(c
h
ss)), (97)
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FIG. 6. Steady state and corresponding thermodynamic properties of the
complex balanced CRN (92). (a) Concentration field of X2. (b) Density of
reaction entropy production rate. (c) Difference between the chemical poten-
tial of i ∈ {X1, X2, X3} [labeled here μss

i (r)] and its chemical potential at
the homogeneous steady state (labeled here μh

i ). (d) Difference between the
chemical potential of Xnr [labeled here μss

nr(r)] and its chemical potential at
the homogeneous steady state (labeled here μh

nr). Simulation parameters in
arbitrary units: RT = 1, χ = 3, k1 = 0.5, k2 = 0.1, μ1,2

○ = 1, μ3
○ = 3, μnr

○ = 0,

μY1
= 4, μY2

= 0, Aρ = 1∀ρ, Dx = 1∀x, ch
1 = 0.007, ch

2 = 0.274, ch
3 = 0.019, and

ch
nr = 0.7.

since the stoichiometric matrix for the internal species (94) admits
the following left null eigenvectors:

(98)

The constraint in Eq. (97) is confirmed by the simulation [compare
Figs. 6(c) and 6(d)].

D. Brusselator
We consider an RD system of three internal species

{X1, X2, Xnr} and four chemostatted species {Y1, Y2, Y3, Y4} that are
interconverted via the reactions as

Y1
1

ÐÐÐ⇀↽ÐÐÐ
−1

X1,

2X1 + X2
2

ÐÐÐ⇀↽ÐÐÐ
−2

3X1,

Y2 + X1
3

ÐÐÐ⇀↽ÐÐÐ
−3

X2 + Y4,

X1
4

ÐÐÐ⇀↽ÐÐÐ
−4

Y3.

(99)

The CRN (99) is known as Brusselator and can be represented
in terms of the six complexes V1 = X1, V2 = X2, V3 = 2X1 + X2,

V4 = 3X1, V5 = Xnr, and ∅ = Y1,2 and the following graph of
complexes:

∅
1

ÐÐÐ⇀↽ÐÐÐ
−1

V1,

V3
2

ÐÐÐ⇀↽ÐÐÐ
−2

V4,

V1
3

ÐÐÐ⇀↽ÐÐÐ
−3

V2,

V1
4

ÐÐÐ⇀↽ÐÐÐ
−4

∅.

(100)

The stoichiometric matrix for the internal species

(101)

admits two cycles, i.e.,

(102)

but only the first one is a right-null vector of the incidence matrix,

(103)

Hence, the deficiency reads δ = 1 [see Eq. (11)] and, in general, the
CRN (99) is neither pseudo detailed balanced nor complex balanced.
Namely, any homogeneous steady state ch

ss of the chemical dynam-
ics satisfying∑ρ>0 Sx,ρ jρ(ch

ss) = 0 does not satisfy∑ρ>0 ∂k,ρ jρ(ch
ss) = 0

too (except for a set of parameters, e.g., {Aρ}, {μy}, M, and K, of null
measure41,55).

We solve the RD dynamics (15) when the mean-field molecular
interactions and the cost of forming interfaces are given by the same
matrices as in Eq. (91). The typical steady-state solution and its ther-
modynamic properties are shown in Figs. 7 and 8, respectively. We
observe that the concentration fields spatially organize (Fig. 7) into
a pattern that is striking different from the previous ones examined
in Subsections VI B and VI C (see Figs. 5 and 6, respectively). In
this case, X1 accumulates in multiple droplets and X2 remains almost
homogeneous. Furthermore, both reactions and diffusion processes
are out of equilibrium since the chemical potentials are not homo-
geneous [Fig. 8(a)]: σ̇ss

rct(r) > 0 [Fig. 8(d)] and σ̇ss
dff(r) > 0 [Fig. 8(c)].

This has two main consequences. First, the dissipation due to the
chemical reactions, quantified by σ̇rct(r), is not homogeneous either:
reactions dissipate more inside the droplets [Fig. 8(d)]. However,
not all reactions contribute in the same way to the total reaction
entropy production rate. Indeed, as shown in Figs. 8(e)–8(h), reac-
tion ρ = 1 dissipates more outside the droplets, while ρ = 2, 3, and
4 dissipate more inside the droplets. Furthermore, ρ = 2 (represent-
ing an autocatalytic reaction) is the reaction dissipating the most.
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FIG. 7. Steady state concentration fields of (a) X1 and (b) X2 of the CRN (99). Sim-
ulation parameters in arbitrary units: RT = 1, χ = 0, k1 = 0.1, k2 = 0.05, μx

○ = 0,
∀x, μY1

= ln 2, μY2
= ln 5, μY3

= ln 0.01, μY4
= ln 0.1, Aρ = 1∀ρ, D1 = 1,

D2 = 10, Dnr = 1, ch
1 = 1.05, ch

2 = 5.76, and ch
nr = 1.00.

This physically implies that reactions ρ = 2, 3, and 4 are more out
of equilibrium inside the droplets or, equivalently, they occur in a
preferential direction (either forward or backward) more inside the
droplets than outside [since the entropy production rate is related to
the asymmetry in the reaction fluxes via Eq. (38a)]. Second, the dif-
fusion processes are out of equilibrium and dissipate mostly at the
interface between the droplets and the bulk as shown in Fig. 8(c).
This physically means that diffusion currents are maintained with a
preferential direction at the interface between the droplets and the
bulk in such a way as to balance the consumption/production of
species inside the droplets due to the chemical reactions and sustain
the steady state pattern.

Note that the steady-state density of nonconservative work
[which satisfies ẇss

nc(r) = σ̇ ss
(r)] is peaked inside the droplets

[see Fig. 8(b)] and, therefore, most of the free energy maintain-
ing nonequilibrium self-organization is provided from inside the
droplets (even if the chemostatted species are homogeneous).

VII. CONCLUSIONS
We provided a general thermodynamic framework to study the

energetics of self-organization in open non-ideal RD systems. We
showed that it can be used to study, in great detail, with spatial
resolution, the contribution of the reactive and diffusive processes
to the dissipation of self-organized structures. For special classes of
RD systems, our framework allowed us to construct potentials that
are minimized by the dynamics (Lyapunov functions) and whose
minima correspond to the steady state. Thermodynamic potentials
(independent of the kinetics) are found for detailed balance RD sys-
tems that relax to equilibrium, while kinetic potentials are found
for pseudo detailed balanced and complex balanced CRNs that relax
to nonequilibrium steady states. In doing so, we demonstrated that
thermodynamics is useful not only to study the energetics of RD
systems but also to make inferences on their dynamics.

Our framework addresses the questions posed in the introduc-
tion concerning the mechanisms sustaining and controlling self-
organization. It reveals how the interplay between passive and active
mechanisms is intricately tied to the topology of the underlying
CRN. In particular, the mechanisms are purely passive in detailed
balanced CNRs (Sec. IV D), where both chemical reactions and
diffusion equilibrate. In contrast, pseudo detailed balanced (Subsec-
tion V A) and complex balanced CRNs (Subsection V B) exhibit a
mix of active and passive traits: chemical reactions dissipate (i.e.,
they are active), but diffusion equilibrates (i.e., it is passive). In
CRNs that are neither pseudo detailed balanced nor complex bal-
anced, both chemistry and diffusion dissipate, and self-organization
is purely active. Our framework further uncovers how the control
of self-organized structures by chemical reactions is also strongly
dependent on the network topology. In the case of pseudo detailed
balanced and complex balanced CRNs, the chemical reactions only
determine the total concentrations of the species, which diffu-
sion then spatially organizes (Subsection V D). Instead, chemical

FIG. 8. Steady-state thermodynamic properties of the CRN (99). (a) Chemical potential of X1. (b) Density of entropy production rate σ̇ ss(r) = σ̇ss
dff(r) + σ̇ss

rct(r). (c) Density
of diffusion entropy production rate σ̇ss

dff(r). (d) Density of reaction entropy production rate σ̇ss
rct(r) = ∑4

ρ=1 σ̇ss
ρ (r) and (e)–(h) its decomposition into the contribution of each

reaction ρ = 1, 2, 3, 4 as explained in Subsection IV B. Simulation parameters are the same as in Fig. 7.
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reactions can directly affect the spatial organization of CRNs that
are neither pseudo detailed balanced nor complex balanced.

Our framework is general and applicable to a wide range of
systems in both biology and synthetic chemistry. It can distinguish
between active and passive mechanisms solely on the basis of the
topology of the CRN. However, determining the dissipation of self-
organized structures requires knowledge of all diffusion and reaction
fluxes, which can be challenging to obtain. From this perspective,
our thermodynamic framework demands a more detailed system
characterization compared to dynamical frameworks that primarily
focus on reproducing self-organized structures.

Furthermore, we emphasize that the crucial feature of our
framework is thermodynamic consistency. This is ensured by the
local detailed balance condition, which corresponds to the macro-
scopic limit43 of the local detailed balance condition of stochastic
thermodynamics47 when specialized for CNRs.46,48 However, it is
important to note that this condition might not hold at scales,
such as those of predator–prey distributions, vegetation patterns,
and spiral patterns of galaxies. Hence, the direct application of our
framework to these systems is not straightforward, and the develop-
ment of thermodynamically consistent coarse-graining techniques,
such as those in Refs. 61 and 62, will be necessary.

Finally, we stress that our local detailed balance condition
(36) is in agreement with the general derivation in Ref. 49, where
the thermodynamic forces conjugated to the reaction currents are
the (stoichiometric-weighted combinations of) chemical potentials
{μi(c(r))}. Other works have used instead the exchange chemical
potentials {μex

i (c(r))}, namely, the differences between the chemi-
cal potentials and the chemical potential of another species chosen as
reference. This is only consistent with the local detailed balance con-
dition when dealing with unimolecular (or pseudo-unimolecular)
reactions.

Future studies will be needed to extend our framework to
fluctuating RD systems63 and to explore the phenomenology of self-
organized structures in non-ideal RD systems following the line of
Refs. 64 and 65. Another interesting extension concerns microswim-
mers that undergo a self-propelled motion;66–70 here, the challenge is
to understand how to properly describe the coupling between chem-
ical reactions, occurring either at the surface of (e.g., Janus colloids in
a fuel bath) or within (e.g., bacteria filled by nutrient consumption)
microswimmers, and the resulting self-propelled dynamics.
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APPENDIX A: MINIMIZATION OF THE FREE ENERGY

We prove here that the equilibrium steady state ceq(r) of closed
RD systems [defined in Eq. (40)] corresponds to the minimum
c ∗
(r) of the free energy (29) satisfying the conserved quantities of

the RD dynamics (15) (i.e., the abundances of the moieties (20) as
discussed in Subsection III B).

We start by recognizing that c ∗
(r) is defined by the minimum

(c ∗
(r), f ∗

) of the Lagrangian functional,

L[c, f ] = F[c] −∑
λ

fλ(∑
i
ℓλ

i ∫
V

dr ci(r) − Lλ
), (A1)

with f = (. . . , fλ, . . .) being the vector of the Lagrange multipliers
and {Lλ

} being the actual values of the moiety abundances. Namely,
(c ∗
(r), f ∗

) is the solution of the following equations:

δL[c, f ]
δci(r)

∣

∗

= μi(c∗(r)) −∑
λ

f ∗λ ℓ
λ
i = 0, (A2a)

δL[c, f ]
δ fλ

∣

∗

= −(∑
i
ℓλ

i ∫
V

dr c∗i (r) − Lλ
) = 0. (A2b)

Equation (A2) implies that c ∗
(r) satisfies the equilibrium con-

ditions in Eq. (40) and, consequently, c ∗
(r) = ceq(r). Indeed, using

Eq. (A2a),
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∑
i

μi(c∗(r))Si,ρ =∑
i
(∑

λ
f ∗λ ℓ

λ
i )Si,ρ = 0, (A3)

by definition of conservation laws [given in Eq. (19)], and
{μi(c

∗
(r))} are homogeneous implying that Eq. (40b) is satisfied

too.

APPENDIX B: MINIMIZATION OF THE SEMIGRAND
FREE ENERGY

We prove here that the equilibrium steady state ceq(r) of open
RD systems [defined in Eq. (40)] corresponds to the minimum
c ∗
(r) of the semigrand free energy (42) satisfying the conserved

quantities of the RD dynamics (15) (i.e., abundances of the moieties
corresponding to the unbroken conservation laws (22) as discussed
in Subsection III B). We also prove that the equilibrium chemical
potentials of the Yp and Yf species are solely determined by the
reference chemical potentials {μref

yp }.
We start by recognizing that c ∗

(r) is defined by the minimum
(c ∗
(r), f ∗

) of the Lagrangian functional,

L[c, f ] =

=F[c]
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

F[c] −∑
yp

μref
yp Myp[c]

−∑
λu

fλu(∑
i
ℓλu

i ∫
V

dr ci(r) − Lλu), (B1)

with f = (. . . , fλu , . . . ) being the vector of the Lagrange multipliers
and {Lλu} being the actual values of the abundances of the moi-
eties corresponding to the unbroken conservation laws. Namely,
(c ∗
(r), f ∗

) is the solution of the following equations:

δL[c, f ]
δci(r)

∣

∗

= μi(c∗(r)) −∑
yp ,λb

μref
yp ℓ

yp

λb
ℓλb

i −∑
λu

f ∗λuℓ
λu
i = 0, (B2a)

δL[c, f ]
δ fλu

∣

∗

= −(∑
i
ℓλu

i ∫
V

dr c∗i (r) − Lλu) = 0, (B2b)

where we used Eq. (25). Equation (B2a) implies that the chemical
potentials in the minimum c ∗

(r) of the semigrand free energy (42)
read

μi(c∗(r)) = ∑
yp ,λb

μref
yp ℓ

yp

λb
ℓλb

i +∑
λu

f ∗λuℓ
λu
i , (B3)

and, therefore, c ∗
(r) satisfies the equilibrium conditions in Eq. (40),

i.e., c ∗
(r) = ceq(r). Indeed,

∑
i

μi(c∗(r))Si,ρ =∑
i

⎛

⎝
∑
yp ,λb

μref
yp ℓ

yp

λb
ℓλb

i
⎞

⎠
Si,ρ

+∑
i

⎛

⎝
∑
λu

f ∗λuℓ
λu
i
⎞

⎠
Si,ρ = 0, (B4)

by definition of conservation laws [given in Eq. (19)], and
{μi(c

∗
(r))} are homogeneous implying that Eq. (40b) is satisfied

too.

Remark. According to Eq. (B3), the equilibrium chemical
potentials of the internal species are determined by (i) the refer-
ence chemical potentials {μref

yp } and (ii) the abundances {Lλu[c]} of
the moieties corresponding to the unbroken conservation laws via
{ f ∗λu
}.

Remark. According to Eq. (B3), the equilibrium chemical
potentials of the potential and force species are solely determined
by the reference chemical potentials {μref

yp }, according to

μyp(ceq(r)) = μref
yp , (B5a)

μy f (ceq(r)) = ∑
yp ,λb

μref
yp ℓ

yp

λb
ℓλb

y f , (B5b)

using ∑λb
ℓ

yp
′

λb
ℓλb

yp = 𝟙yp ,yp
′ and ℓλu

y = 0. Thus, if the force species
were chemostatted in such a way that μy f (r) ≠ μy f (ceq(r))
= ∑yp ,λb

μref
yp ℓ

yp

λb
ℓλb

y f , open RD systems would not admit an equi-
librium steady state, and detailed balance would be broken
[as discussed in Subsection IV D using the formulation of the sec-
ond law given in Eq. (41)]. Similarly, if the potential chemostats
imposed different values of the chemical potentials {μyp(r)} in dif-
ferent r ∈ V , open RD systems would not admit an equilibrium
steady state and detailed balance would be broken. If this is the case,
we recall that the reference chemical potential {μref

yp } entering the
definition of semigrand free energy (42) can be chosen arbitrarily
among these values. This is equivalent to choosing a reference equi-
librium steady state ceq(r) to which the open RD system would relax
if μyp(r) = μref

yp , and the force species were not chemostatted.

APPENDIX C: MINIMIZATION OF THE FREE ENERGY
IN PURELY DIFFUSIVE SYSTEMS

We prove here that the steady state css(r) of either pseudo
detailed balanced CRNs (defined in Subsection V A) or complex
balanced CRNs (defined in Subsection V B) corresponds to the
minimum c●(r) of the free energy F[c] in Eq. (29) when the
total abundances of the chemical species are fixed and equal to
∫ V dr css(r).

In what follows, we use Fpdb/cb[c] for the kinetic potential
of either pseudo detailed balanced or complex balanced CRNs.
Namely, the potential obtained from the free energy (29) after
applying the shifts {Δx} of the standard chemical potentials of the
internal species in Eq. (56) for pseudo detailed balanced CRNs or
in Eq. (72) for complex balanced CRNs. Furthermore, like in Sub-
sections V A and V B, we assume that the chemostatted species are
ideal, homogeneous, and constant in time.

We have to start by recognizing that, in agreement with Sub-
sections V A and V B, css(r) is a minimum of the kinetic potential
Fpdb/cb[c] satisfying the conserved quantities of the RD dynamics
(15) [i.e., abundances of the moieties corresponding to the unbro-
ken conservation laws (22)]. Indeed, the minimum (c ∗

(r), f ∗
) of

the Lagrangian functional,
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L[c, f ] = Fpdb/cb[c] −∑
λu

fλu(∑
x
ℓλu

x ∫
V

dr cx(r) − Lλu), (C1)

with f = (. . . , fλu , . . . ) being the vector of the Lagrange multipli-
ers and {Lλu} being the actual values of the moieties abundances
corresponding to the unbroken conservation laws, is the solution of
the following equations:

δL[c, f ]
δcx(r)

∣

∗

= μx(c∗(r)) + Δx −∑
λu

f ∗λuℓ
λu
x = 0, (C2a)

δL[c, f ]
δ fλ

∣

∗

= −(∑
x
ℓλu

x ∫
V

dr c∗x (r) − Lλu) = 0, (C2b)

where we used the fact that the chemostatted species are ideal,
homogeneous, and constant in time. Equation (C2a) implies that
c ∗
(r) satisfies the conditions in Eq. (64) [respectively, Eq. (80)] for

the steady state of pseudo detailed balanced (respectively, complex
balanced) CRNs with {Δx} given in Eq. (56) [respectively, Eq. (72)].

We now consider the minimum of the free energy F[c] in
Eq. (29) when the total abundances of the chemical species are
fixed and equal to ∫ V dr css(r): the minimum (c●(r), f ●) of the
Lagrangian functional,

L[c, f ] = F[c] −∑
x

fx∫
V

dr (cx(r) − css
x (r)), (C3)

with f = (. . . , fx, . . .) being the vector of the Lagrange multipliers,
satisfying

δL[c, f ]
δcx(r)

∣

●

= μx(c●(r)) − f ●x = 0, (C4a)

δL[c, f ]
δ fx

∣

●

= −∫
V

dr (c●x(r) − css
x (r)) = 0, (C4b)

where we used again the fact that the chemostatted species are ideal,
homogeneous, and constant in time. By comparing Eqs. (C2) and
(C4), we can conclude that Eq. (C4) admits a solution such that
c●(r) = c ∗

(r) = css(r) and − f ●x = Δx −∑λu
f ∗λu

ℓλu
x ∀x. Namely, the

r-dependence of css(r) for either pseudo detailed balanced CRNs
or complex balanced CRNs can be obtained by minimizing the free
energy F[c] in Eq. (29) with the constraint that the total abundances
of the chemical species are equal to ∫ V dr css(r).
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