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We develop a general classification of the nature of the instabilities yielding spatial organization in open
nonideal reaction-diffusion systems, based on linear stability analysis. This encompasses dynamics where
chemical species diffuse, interact with each other, and undergo chemical reactions driven out of equilibrium
by external chemostats. We find analytically that these instabilities can be of two types: instabilities caused
by intermolecular energetic interactions (E type), and instabilities caused by multimolecular out-of-
equilibrium chemical reactions (R type). Furthermore, we identify a class of chemical reaction networks,
containing unimolecular networks but also extending beyond them, that can only undergo E-type
instabilities. We illustrate our analytical findings with numerical simulations on two reaction-diffusion
models, each displaying one of the two types of instability and generating stable patterns.

DOI: 10.1103/PhysRevLett.131.138301

Introduction.—Reaction-diffusion (RD) systems play a
crucial role in explaining the emergence of many spatial
structures across scales, e.g., spiral form of galaxies [1],
predator-prey distributions in ecological models [2], skin
color patterns of animals [3], self-organization at the
molecular scale [4], phase separation in electrochemical
batteries [5]. The foundation of RD theory dates back to the
seminal paper of A. M. Turing [6], where he proposed a
spatial symmetry-breaking mechanism yielding stationary
patterns.
Subsequent studies by the Brussels school of thermody-

namics, led by I. Prigogine, showed the physicochemical and
thermodynamical relevance of Turing patterns. Since they
considered ideal solutionswhere the concentration dynamics
is governed by linear diffusion andmass-action kinetics, they
emphasized the need to consider multimolecular reactions
and open systems driven far from equilibrium to generate
patterns [7–9]. Indeed, in ideal solutions, on the one hand,
mutimolecular reactions are necessary to generate purely
entropic interactions between species which create the non-
linearities at the basis of the instabilities, and on the other
hand, nonequilibrium drives are required to prevent relax-
ation toward homogeneous concentration profiles. Since
then, RD structures in ideal solutions have been extensively
studied [10–13].
Nonideal mixtures feature instead both entropic and

energetic interactions, so that concentrations can be non-
homogeneous at equilibrium even in the absence of
chemical reactions. This is well described, for instance,
by the Cahn-Hilliard theory of spinodal decomposition
[14]. Recently, nonideal mixtures that undergo chemical
reactions have attracted considerable attention due to their
role in biology [15]. Reactions can affect the nature of
phase separation and, when driven out of equilibrium, these

active systems exhibit rich phenomenologies. To be
physicochemically justified and thermodynamically con-
sistent, RD models need to express not only diffusion but
also chemical dynamics in terms of nonideal chemical
potentials [16,17]. Heuristic models of nonideal diffusion
reactions have been considered, but use ideal chemical
kinetics (mass action) and thus lack thermodynamic con-
sistency [18–20]. Consistent models have been considered
in Refs. [15,21–23]. However, they focus on unimolecular
reactions, which cannot accommodate any spatial insta-
bility in the absence of energetic interactions. Extending
these studies by considering multimolecular reactions is
important because the instabilities that cause spatial organi-
zation can now arise from an interplay between chemical
reactions and molecular interactions.
In this Letter, we consider thermodynamically consistent

deterministic descriptions of generic nonideal mixtures of
species undergoing diffusion and chemical reactions of
arbitrary molecularity, driven out of equilibrium by external
chemostats. Using linear stability analysis, we provide a
rigorous classification of the possible instabilities and predict
the conditions underwhich they arise.We find that they canbe
of two distinct types, which we call E-type and R-type
instabilities. The former depends solely on the details of
the intermolecular interactions, as in the Cahn-Hilliard theory
of spinodal decomposition. The latter is controlled by the
topology of the chemical reaction networks (CRNs), as in the
Turing theory of instabilities in ideal mixtures. Unlike other
classifications of RD instabilities [24,25] which focus solely
on dynamics, ours is based on the underlying microscopic
mechanism causing the instability. Importantly, we identify a
wide class of CRNs where the instability can only be of E
type.We also illustrate our findings with two specific models,
each of them displaying one of two types of instabilities.
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Chemical reactions and molecular interactions.—We
consider an isothermal nonideal mixture at temperature T,
composed of chemical species α∈S which are reacting and
diffusing within a solution of volume V. We partition the
set of chemical species S into two nonoverlapping subsets:
the internal species x∈X and the chemostated species
y∈Y. The latter are exchanged with the external chemo-
stats. Each chemical reaction ρ∈R is represented by the
chemical equation

νyþρZy þ νxþρZx⇌
þρ

−ρ
νy−ρZy þ νx−ρZx; ð1Þ

where Zα is the chemical symbol of species α∈S, and ναþρ

[respectively (resp.) να−ρ] is the stoichiometric coefficient
of species α in the forward (resp. backward) reaction
þρ (resp. −ρ). We always use Einstein notation: repeated
upper-lower indices implies the summation over all the
allowed values for the indices. The set of internal species
may include a nonreacting species (nr∈X ), defined by
νnr�ρ ¼ 0 for all �ρ. We assume that the chemostatted
species Y are ideal and maintained at constant homo-
geneous concentrations, which result in the homogeneous
chemical potentials μy. In practice, chemostats can drive
chemical reactions far from equilibrium.
Turning to the dynamics, by combining dynamical density

functional theory [26] and open CRN theory [27–29], the
concentration fields of internal species cxðr; tÞ evolve as

∂tcx ¼ Dx∇ · ðcx∇μxÞ þ Sρxjρ; ð2Þ

with closure relations

μx ¼
1

kBT
δF
δcx

; ð3aÞ

jρ ¼ jþρ − j−ρ; ð3bÞ

j�ρ ¼ sρe
μxν

x
�ρþμyν

y
�ρ ; ð3cÞ

where∇ is the spatial gradient; kB is the Boltzmann constant;
μx (resp. Dx) is the nondimensional chemical potential
(diffusion coefficient) of species x; F is the Helmholtz free
energy of the nonideal mixture; Sρx ¼ ν−ρx − νþρ

x is the entry
of the so-called stoichiometric matrix S of the internal
species (indexes x and ρ correspond to the rows and columns,
respectively); jρ is the net current of reaction ρ expressed as
the difference between the forward jþρ and the backward j−ρ
reaction flux; sρ is a positive preexponential factor that
depends on the activation energy of the reaction ρ. The
reaction fluxes j�ρ are defined in Eq. (3c) as the Arrhenius-
like rates. We note that thermodynamically consistent
currents could in principle allow for an additional depend-
ence on the concentrations in sρðcÞ, but this is rarely

considered and is thus omitted in our study. The diffusive
contribution to the dynamics describes a pure gradient flow,
and the only nonequilibrium drive stems from chemostats. In
the absence of chemostats, the system relaxes to equilibrium.
Dynamical models similar to Eqs. (2) and (3) have been
recently considered in Refs. [21,22,30].
The Helmholtz free energy of the nonideal mixture

reads as

F½c� ¼ kBT
Z

dr fðc;∇cÞ þ Fchm; ð4Þ

where f is given in terms of the gradient expansion

fðc;∇cÞ ¼ f0ðcÞ þ
1

2
Kx;x0 ðcÞð∇cxÞ · ð∇cx0 Þ; ð5Þ

the constant term Fchm is the contribution due to the ideal
chemostatted species, and c ¼ ðc1;…; cjX jÞ⊺ (with jX j being
the number of internal species). Here,f,f0, andKx;x0 ¼ Kx0;x
for x; x0 ∈X are model functions of the concentrations.
Equation (5) is consistent with the free energy used in
Refs. [31,32], and it can be straightforwardly extended to a
more general form, including higher orders in gradients, as
introduced by Cahn and Hilliard [14].
By using Eqs. (4) and (3a), the chemical potentials

read as

μx ¼
∂f0
∂cx

þ 1

2

∂Kx0;x00

∂cx
ð∇cx0 Þ · ð∇cx00 Þ − ∇ · ðKx;x0∇cx

0 Þ: ð6Þ

For ideal solutions, the free energy only comprises the
entropic term f ¼ P

x cx ln cx, in which case one re-
covers a linear diffusion and mass-action kinetics in Eq. (2):

Dx∇ · ðcx∇μxÞ ¼ Dx∇2cx and j�ρ ∝
Q

x c
νx�ρ
x . For nonideal

mixtures, the local free energy f0 contains additional
contributions, typically given as an expansion in
powers of the concentrations [22], yielding nonlinear
diffusion. If one considers homogeneous concentra-
tions c� ¼ ðc�1;…; c�jX jÞ⊺, we have ∇μ�x ¼ 0 where

μ�x ¼ ∂f0ðc�Þ=∂cx. Therefore, a homogeneous fixed point
of Eq. (2) must satisfy the following steady-state condition:

Sρxjρðfμ�xg; fμygÞ ¼ 0: ð7Þ

Equation (7) shows that fixed points are determined by the
chemical reaction contribution to the dynamics, which
depends on (i) the stoichiometric coefficients, (ii) the
chemical potentials of chemostatted species μy, and (iii) the
details of the local free-energy f0 (i.e., including both
entropic and energetic contributions). In contrast, for purely
diffusive systems, each concentration is conserved, so that
the homogeneous concentrations are fixed independently of
the free-energy parameters.
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Nature of instabilities: E type vs R type.—To analyze the
stability of the homogeneous steady state, we consider
small concentration perturbations around the homogeneous
fixed point cxðr; tÞ ¼ c�x þ δcxðr; tÞ. Using the Fourier
transform g̃ðqÞ ¼ R

drgðrÞ exp ðiq · rÞ, the perturbation of
the chemical potentials in Eq. (6) can be written as

δμ̃ðqÞ ¼ MðqÞ · δc̃ðqÞ; ð8aÞ

Mxx0 ðqÞ ¼
∂
2f0ðc�Þ
∂cx∂cx0

þ q2Kx;x0 ðc�Þ; ð8bÞ

where δμ̃ ¼ ðδμ̃1;…; δμ̃jX jÞ⊺ and δc̃ ¼ ðδc̃1;…; δc̃jX jÞ⊺.
Using Eq. (2), the evolution of a perturbation δc̃ reads as

∂tδc̃ðqÞ ¼ −q2A · δμ̃ðqÞ þ S · δj̃ðqÞ; ð9aÞ

A ¼ diagðD1c�1;…; DjX jc�jX jÞ: ð9bÞ

By inserting μx ¼ μ�x þ δμx into Eq. (3c) and calculating
the Fourier transform, we arrive at

δj̃ρðqÞ¼sρ
h
νxþρe

μ�
x0ν

x0
þρþμyν

y
þρ−νx−ρe

μ�
x0ν

x0
−ρþμyν

y
−ρ
i
δμ̃xðqÞ: ð10Þ

Using Eq. (8b), we deduce that Eq. (9) becomes

∂tδc̃ðqÞ ¼ BðqÞ ·MðqÞ · δc̃ðqÞ; ð11aÞ

BðqÞ ¼ −q2Aþ C: ð11bÞ

The elements of the square matrix C are defined from
Eq. (10):

Cx0
x ¼ Sρxsρ

h
νx

0
þρe

μ�
x00ν

x00
þρþμyν

y
þρ − νx

0
−ρe

μ�
x00ν

x00
−ρþμyν

y
−ρ
i
; ð12Þ

where x and x0 are the row and column index, respectively.
We emphasize that the product structure of the Jacobian
matrix BðqÞ ·MðqÞ follows from the thermodynamically
consistent description defining both diffusion and chemical
fluxes in terms of chemical potentials.
Standard stability analysis [1] of Eq. (11a) implies that

the homogeneous fixed point c� is unstable if at least one of
the eigenvalues fλig of the Jacobian matrix BðqÞ ·MðqÞ
has a positive real part for a given wave number q. To avoid
any divergence of the perturbations δc̃ðqÞ at small wave-
lengths, we impose that all eigenvalues λi are negative as q
tends to infinity [1]. In practice, this can be enforced by
choosing appropriately fKx;x0 g in Eq. (5) which determines
the cost of forming interfaces. This means that if we assume
that Imλiðq0Þ ¼ 0, the condition for the homogeneous fixed
point c� to become unstable, for at least one wave number
q0 ≠ 0, can be expressed in terms of the determinant of the
Jacobian matrix:

detðBðq0Þ ·Mðq0ÞÞ ¼ ðdetBðq0ÞÞðdetMðq0ÞÞ ¼ 0: ð13Þ

Our analysis covers instabilities which typically induce
stationary or transient patterns [24]. However, it does not
cover instabilities often arising in homogeneous time
oscillations and traveling waves [24], where simultane-
ously Reλiðq0Þ ¼ 0 and Imλiðq0Þ ≠ 0. In that case, the
instability condition cannot be expressed in terms of the
determinant of the matrix.
The condition in Eq. (13) shows that the instability can

be caused by two distinct mechanisms: detMðqÞ ¼ 0 or
detBðqÞ ¼ 0. Matrix M depends on the free energy
[Eq. (4)], and it also characterizes the purely diffusive
system without reactions (C ¼ 0). The case detMðqÞ ¼ 0
can only happen due to energetic interactions, since for
ideal mixture M is diagonal and positive. Thus, we refer to
such an instability as an E type. In contrast, detB ¼ 0 can
happen in either ideal or nonideal solutions. The corre-
sponding instability is not caused by energetic interactions,
but instead by multimolecular chemical reactions. We refer
to it as an R-type instability. Although matrix C contains
information on both the free energy (via the chemical
potentials) and the stoichiometric matrix S, the condition
detB ¼ 0 can only be met if S satisfies certain conditions
independent of the free energy, as we discuss below.
Restricted route to instability.—We now identify the

specific class of CRNs where only instabilities of E type
can arise. In this class, each reaction ρ interconverts mρ

molecules of one specific internal species into mρ mole-
cules of a different internal species, without constraints on
the stoichiometry of the chemostatted species:

νyþρZy þmρεx;þρZx⇌
þρ

−ρ
νy−ρZy þmρεx0;−ρZx0 ; ð14Þ

where x ≠ x0, and there is no summation over x and x0
(since they do not appear as repeated upper-lower indices).
In Eq. (14), εx;�ρ and εx0;�ρ can be either 0 or 1, so that
every internal species is either a reactant or a product in a
given reaction ρ. Furthermore,mρ > 0 is an integer number
that can be different for each reaction ρ.
To prove that the CRNs (14) can only undergo E-type

instabilities, we first demonstrate in Appendix A that the
corresponding C [Eq. (12)] has non-negative nondiagonal
elements

Cx;x0 ≥ 0; x ≠ x0 ð15Þ

and that the diagonal elements of C satisfy the inequality

Cx;x ≤ −
X

x0≠x∈X

Cx0;x; ð16Þ

where the equality holds if and only if
P

x∈X Sρx ¼ 0, i.e.,
when the CRNs conserves the total concentration [27].
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We then proceed to show that Eqs. (15) and (16) imply
detBðqÞ ≠ 0, which rules out R-type instability based on
Eq. (13). To this end, we note that every eigenvalue of the
matrix B lies in the complex plane within (at least) one of a
series of circles, referred to as Gershgorin circles [33]. In
practice, each Gershgorin circle has a radius Rx defined as

Rx ¼
X

x0≠x∈X

jBx0;xj ¼
X

x0≠x∈X

Cx0;x; ð17Þ

where we have used that A is diagonal. Moreover, the
center of each Gershgorin circle is located on the real axis
(since B has only real elements) at the point vx given by

vx ¼ Bx;x ≤ −q2Dxc�x − Rx; ð18Þ

where we used Eq. (16). As one can see from Eqs. (17) and
(18), for q > 0 all Gershgorin circles are entirely located in
the left complex half plane. Thus, all eigenvalues of the
matrix B have a negative real part, so that detBðqÞ ≠ 0.
Combining this result with the condition in Eq. (13), it
follows that the only way for the RD systems with reactions
in Eq. (14) to entail any instability is detMðqÞ ¼ 0, namely
via a E-type instability.
Reactions described by Eq. (14) include pseudounimo-

lecular (∀ ρ: νy�ρ ≥ 0 and mρ ¼ 1) and nonunimolecular
reactions (for at least one ρ: mρ > 1). It is well known that
ideal RD systems made of pseudounimolecular reactions
cannot exhibit Turing patterns, as their dynamics is linear.
In nonideal mixtures, energetic contributions to the free
energy make the dynamics nonlinear even for pseudouni-
molecular reactions. Indeed, the reaction fluxes in Eq. (3c)
and the matrix B in Eq. (11b) explicitly depend on
∂fðc�Þ=∂cx through the chemical potential μx [Eq. (6)],
which could a priori trigger R-type instabilities. Yet, our
result shows that nonlinearities stemming from molecular
interactions can only create E-type instabilities for pseu-
dounimolecular reactions. Importantly, this result extends
to a special class of CRNs that also includes nonunimo-
lecular reactions. We emphasize that, although such chemi-
cal reactions cannot generate R-type instabilities, their
topology and rates strongly influence the location of the
E-type instability, as they determine the homogeneous
fixed points [Eq. (7)].
Illustrative examples.—We first consider the pseudo-

unimolecular CRN in the inset of Fig. 1. In Appendix B, we
derive its matrix C and show that it satisfies Eqs. (15) and
(16). Thus, this CRN belongs to the special class which
admits only E-type instabilities. For the chemical poten-
tials, we use the following expressions:

μx ¼ μθx þ log cx þ Lx;x0cx
0 − Kx;x0∇2cx

0
; ð19aÞ

L¼

X1 X2 X3 nr

X1

X2

X3

nr

0
BBBBB@

0 χ 0 0

χ 0 χ χ

0 χ 0 0

0 χ 0 0

1
CCCCCA
; K¼

X1 X2 X3 nr

X1

X2

X3

nr

0
BBBBB@

k1 k2 0 0

k2 k1 k2 k2
0 k2 k1 0

0 k2 0 k1

1
CCCCCA
:

ð19bÞ

where μθx are the standard chemical potentials.
The matrices L and K describe the mean-field molecular

interactions and the cost at forming interfaces, respectively.
We numerically determine the homogeneous fixed points
c�, from which we compute the matrices M and B
according to Eqs. (8b) and (11b), respectively. In Fig. 1,
for one of the fixed points we plot the eigenvalue λþðqÞ of
the matrix B ·Mwhich becomes positive over a finite range
of q. We compared its behavior with the eigenvalue λdþðqÞ
corresponding to pure diffusion system with Bd ¼ −q2A
and Md ¼ M at the same fixed point c�. Both λþðqÞ and
λdþðqÞ are positive in the same range of q, then vanish at the
same point q0 satisfying detMðq0Þ ¼ 0. This agrees with
the scenario of E-type instabilities: it is sufficient to analyze
the eigenvalues of the purely diffusive system to deduce the
range of stability of the corresponding RD system. The
model displays at least two additional homogeneous fixed
points. One is stable λþ < 0. The other is unstable, and it is
such that λþð0Þ > 0 and λþðqÞ reaches a maximum at
qm > 0.
We now consider a nonideal version of the Brusselator

model in the inset of Fig. 2. We use μ1, μ2 from Eq. (19a).
This model does not satisfy the conditions in Eq. (14) and

FIG. 1. Inset: example of CRN that can only undergo E-type
instabilities. Main: the blue curve is λþ for the RD system from the
inset, the orange curve is λdþ for the corresponding purely diffusive
system with same fixed points c� ¼ ð0.12; 2.72; 0.10; 1.00Þ⊺.
Parameters: Dx ¼ 1, μθ1 ¼ μθ3 ¼ μθnr ¼ 0, μθ2 ¼ −2, sρ ¼ 10−3,
χ ¼ 1, k1 ¼ 0.5, k2 ¼ 0.1, μY1

¼ 1, μY2
¼ −1 in arbitrary units.
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thus can and does display an R-type instability. The right
inset in Fig. 2 shows that while all eigenvalues of the purely
diffusive process are negative, the eigenvalues of the RD
Brusselator can be positive (Fig. 2), in stark contrast with
the previous model. Indeed, since the Brusselator is not
restricted to E-type instabilities, it can exhibit patterns in a
regime where the corresponding purely diffusive system is
stable.
Finally, we compare the results of numerical simulations

for the two RD systems in Figs. 1 and 2. Figure 3 shows the
steady-state 2D patterns of one of the chemical compo-
nents. It is worth noting that the pattern in Fig. 3(a), for the
RD system with reactions satisfying Eq. (14), is qualita-
tively analogous to the complete phase separation obtained

in purely diffusive dynamics. In contrast, the pattern of the
Brusselator in Fig. 3(b) shows a striking different spatial
organization which could not be reproduced by the corre-
sponding purely diffusive system.
Discussion.—We characterized the nature of instabilities

in thermodynamically consistent deterministic dynamics of
nonideal RD systems in solution described by Arrhenius
rates. We considered reversible reactions, but our results
also hold for irreversible reactions. Extension to mixtures
[15] is left for future work. Our decomposition in either
E-type or R-type instability was shown for generic free
energies and chemical reactions obeying the Arrhenius rate
law Eq. (3c). It cannot be extended to rates laws where
sρðcÞ depends on the concentration (due to the definition of
the matrix B). It can however be extended when sρðμÞ
depends on the chemical potentials. Our proof that CRNs
(14) can only undergo E-type instabilities however does not
hold in this latter case and should be revisited. Future
studies will be needed to study the thermodynamics
(resp. fluctuations) of these systems, as recently done for
ideal solutions [35–37] (resp. ideal [38] and nonideal RD
systems [39]), and clarify their connection to heuristic
active field theories including chemical degrees of freedom
[40,41]. Turing instability in ideal solution requires differ-
ent diffusion coefficients [12], but our condition for R-type
instability does not. It would be interesting to explore if
interactions could generate R instabilities inducing sta-
tionary patterns in models with the same diffusion coef-
ficients. Our framework provides a tool to analyze how
interactions promote or suppress the different types of
instabilities, as recently done for models without thermo-
dynamic consistency [42,43].

This research was funded by project ChemComplex
(No. C21/MS/16356329) and project SMAC
(No. 14389168) funded by Fonds National de la
Recherche—FNR, Luxembourg, and by Project
No. INTER/FNRS/20/15074473 funded by Fonds de la
Recherche Scientifique—FNRS (F.R.S.—FNRS), Belgium
and FNR (Luxembourg).

Appendix A: Proof of Eqs. (15) and (16) for CRNs
that satisfy Eq. (14).—First, we recognize that the
stoichiometric coefficients of the chemical equations (14)
satisfy the following constraints:

if νx;�ρ ≠ 0 then νx;∓ρ ¼ 0; ðA1aÞ

either νx;�ρ ¼ 0 or νx;�ρ ¼ mρ; ðA1bÞ

either
X
x

νx;�ρ ¼ 0 or
X
x

νx;�ρ ¼ mρ: ðA1cÞ

Second, we split the set of chemical reactionsR into two
groups: internal and exchange reactions R ¼ Rin ∪ Rex.
Internal reactions ρ∈Rin conserve the total concentration,

FIG. 2. Inset (left): example of CRN undergoing a R-type
instability. Main: the blue curve is λþ. Inset (right): the eigen-
values of the corresponding purely diffusive dynamics. Para-
meters: D1 ¼ Dnr ¼ 1, D2 ¼ 10, μθ1 ¼ μθnr ¼ 0, μθ2 ¼ 9.2,
sρ ¼ 1, χ ¼ 0, k1 ¼ 0.1, k2 ¼ 0.05, μY1

¼ 9.9, μY2
¼ 1.1,

μY3
¼ −27.6, μY4

¼ −18.4 in arbitrary units.

FIG. 3. The steady-state patterns for c2 from numerical sim-
ulations in two-dimensional space with the periodic boundary
conditions. (a) The unimolecular CRN with parameters from
Fig. 1; (b) The Brusselator with parameters from Fig. 2. For
simulations we used the py-pde package [34].
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i.e.,
P

x Sx;ρ ¼ 0 for ρ∈Rin. The exchange reactions do
not, i.e.,

P
x Sx;ρ ≠ 0 for ρ∈Rex, and read as

νyþρexZy⇌
þρex

−ρex
νy

0
−ρexZy0 þ νx;−ρexZx; ðA2Þ

namely, the internal species x is either a reactant or a
product.
Third, we consider the nondiagonal elements Cx;x0 with

x0 ≠ x. (i) Because of Eq. (A1c), Sx;ρ ¼ �mρ implies
νx0;∓ρ ¼ 0. (ii) Because of Eq. (A2), Sx;ρex ¼ �mρex implies
νx0;ρex ¼ νx0;−ρex ¼ 0. Hence, the terms of the summation
over ρ in Eq. (12), namely,

Ξx;x0;ρ ¼ Sx;ρsρ
h
νx0;þρe

μ�
x00ν

x00
þρþμyν

y
þρ − νx0;−ρe

μ�
x00ν

x00
−ρþμyν

y
−ρ
i
;

ðA3Þ

read as

Ξx;x0;ρ ¼ mρsρe
μ�ανα�ρνx0;�ρ ≥ 0; if Sx;ρ ¼ �mρ; ðA4aÞ

Ξx;x0;ρ ¼ 0; if Sx;ρ ¼ 0; ðA4bÞ

Ξx;x0;ρ ¼ 0; if ρ∈Rex; ðA4cÞ

showing that all nondiagonal elements in Eq. (12) are non-
negative, and thus proving Eq. (15).
Fourth, we consider the diagonal elements Cx;x. Because

of Eqs. (A1a) and (A1b), Sx;ρ ¼ �mρ implies νx;∓ρ ¼ mρ

and νx;�ρ ¼ 0. Hence, the terms of the summation over ρ in
Eq. (12) become

Ξx;x;ρ ¼ −mρsρe
μ�ανα∓ρνx;∓ρ ≤ 0; if Sx;ρ ¼ �mρ; ðA5Þ

independently of whether ρ∈Rin or ρ∈Rex.
Fifth, we consider

P
x Cx;x0. By using the splitting

R ¼ Rin ∪ Rex, Eq. (A4c), and
P

x Sx;ρ ¼ 0 for ρ∈Rin,
we obtain

X
x

Cx;x0 ¼
X

ρ∈Rex

Ξx0;x0;ρ ≤ 0; ðA6Þ

proving Eq. (16).

Appendix B: Matrix C for Fig. 1.—Here we derive the
matrix C for the example shown in Fig. 1. The
coefficients να;�ρ can be written in matrix form:

fνα;þρg ¼

1 2 3 4 5

X1

X2

X3

Y1

Y2

0
BBBBBB@

0 1 0 0 0

0 0 1 1 0

0 0 0 0 1

1 0 0 0 0

0 0 0 0 0

1
CCCCCCA

;

fνα;−ρg ¼

1 2 3 4 5

X1

X2

X3

Y1

Y2

0
BBBBBB@

1 0 0 0 1

0 1 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 1 0 0

1
CCCCCCA

; ðB1Þ

which gives us the stoichiometric matrix S

S ¼

1 2 3 4 5

X1

X2

X3

nr

0
BBBBB@

1 −1 0 0 1

0 1 −1 −1 0

0 0 0 1 −1
0 0 0 0 0

1
CCCCCA

: ðB2Þ

Using Eq. (12), (B1), and (B2), for Fig. 1 we find
that

C ¼

X1 X2 X3 nr

X1

X2

X3

nr

0
BBBBB@

−s1eμ�1 − s2eμ
�
1 − s5eμ

�
1 s2eμ

�
2 s5eμ

�
3 0

s3eμ
�
1 −s2eμ�2 − s3eμ

�
2 − s4eμ

�
2 s4eμ

�
3 0

s5eμ
�
1 s4eμ

�
2 −s4eμ�3 − s5eμ

�
3 0

0 0 0 0

1
CCCCCA

; ðB3Þ

where the fixed point chemical potential μ�i for i ¼ 1, 2, 3 corresponds to the species X1, X2, X3, respectively. From
Eq. (B3) one can see that C satisfies the properties in Eqs. (15) and (16). Notice that, as discussed in Appendix A,
the exchange reactions—rates s1 and s3—contribute only to the diagonal elements.
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