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Living cells are active mechanical systems that are able to generate forces. Their structure and shape are primarily
determined by biopolymer filaments and molecular motors that form the cytoskeleton. Active force generation
requires constant consumption of energy to maintain the nonequilibrium activity to drive organization and
transport processes necessary for their function. To understand this activity it is necessary to develop new ap-
proaches to probe the underlying physical processes. Active cell mechanics incorporates active molecular-scale
force generation into the traditional framework of mechanics of materials. This review highlights recent experi-
mental and theoretical developments towards understanding active cell mechanics. We focus primarily on intra-
cellular mechanical measurements and theoretical advances utilizing the Langevin framework. These developing
approaches allow a quantitative understanding of nonequilibrium mechanical activity in living cells. This article is
part of a Special Issue entitled: Mechanobiology.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Living cells are complex machines that constantly consume energy
to maintain their spatial and temporal organization [1,2]. This energy
consumption is required to overcome the tendency to maximize entro-
pic disorder, and is used to self-organize the cell. From the statistical
mechanics point of view, a cell represents a system far away from
thermodynamic equilibrium. This non-equilibrium behavior allows
the organization and operation of complex mechanical processes at
the molecular scale. The current interest in building nanoscale machines
can greatly profit from such strategies as typical engineering methods
break down at the small scale where thermal fluctuations dominate
over directed and controlled movement. Furthermore, the study of
working principles used by living cells provides interesting insight on
how active mechanical forces can modify or even control the mechani-
cal properties of a polymer network [3-5]. An interesting example is
provided by strain stiffening [5], where the active contraction of molec-
ular motors can increase the mechanical stiffness of a material by more
than an order of magnitude.

The effect of active forces on self organization and material proper-
ties is a highly active research field [6-10]. Typical experimental
approaches combine active mechanical measurements, with detailed
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analysis of the intracellular movement [4,11,131,132,134]. Further-
more, in recent years active gel theories have been successfully applied
to describe and quantify flows and deformation within cells [10,12,13-
16]. These active gel models have been recently reviewed [9,17]. Here
we focus on experimental and theoretical approaches that allow local
measurement and modeling of active systems. We define the term ‘ac-
tive mechanics’ that integrates active components in the mechanical de-
scription of a material. A main part of this article describes Langevin-
equation based approaches to derive the experimentally accessible
quantities such as effective energy and force spectra using molecular
properties of the underlying processes. This approach separates the con-
tributions from thermal fluctuations and active forces to provide a
framework to interpret and analyze activity measurements. Additional-
ly, this approach does not rely on a hydrodynamic analysis as typically
done in active gel theories. These active gel theories are optimal to
describe active behavior on long timescales, where most biological
material is considered fluid. In contrast, both the experimental and
theoretical aspects of this work focus on a description of processes at
intermediate and short timescales, where the viscoelastic material
properties are dominant.

2. Experimental approaches
2.1. Principle of measurement

Advanced methods are used in materials science to determine the
mechanical properties of a material, well known under the keyword
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rheology [18,19]. Rheology exploits the constitutive relation between
stress (force per unit area) and strain (relative deformation) which is
commonly known as Hooke's law, illustrated in Fig. 1a. The simplest
form of this law (F = kx) describes how a force F, applied to an object
with elastic constant k leads to a deformation x. This simplified law
applies for 1D objects such as springs or rubber bands. To capture the
geometric parameters of a 3D object the general form of Hooke's law
o = E x u is commonly used. Here the stress 0 = F/A is defined as the
force F acting on a unit area A of the material. The strain u = x/xq corre-
sponds to the relative deformation (Fig. 1a). Since the force direction
with respect to the surface can be decomposed into normal or parallel
components, the resulting deformation is found to be a tensile or
shear deformation respectively. Depending on the type of deformation
the mechanical properties are described by the Young's modulus E
(normal deformation), the shear modulus G (shear deformation), or
the bulk modulus K (uniform compression), as illustrated in Fig. 1a. In
the case of linear elasticity, these different moduli are simple scalar
numbers, related to each other by the Poisson's ratio v, that quantifies
compressibility [20]. As we describe later, these moduli can become
time, or frequency dependent to describe biological materials that are
typically viscoelastic. In the more complex case of anisotropic materials,
the introduced constitutive equation requires tensors, where the
mechanical modulus becomes a fourth order tensor. In the following
we only consider the case of isotropic material for simplicity, however,
the described reasoning can be directly extended to a tensor notation.
In the context of living cells, the actual mechanical properties
depend on the timescale of force application, and hence are described
within the framework of viscoelastic materials. Here, the mechanical
properties are decomposed into an elastic and a dissipative (viscous)
component, where both may depend on the timescale investigated.
The extreme case of pure elastic or purely viscous material is illustrated
in Fig. 1b. The viscoelastic moduli are not scalars as in the pure elastic
case, but functions of time or frequency. There are two main experimen-
tal strategies to determine the viscoelastic properties, namely the appli-
cation of a step stress/strain, and the application of periodic stress/
strain. A typical example of the first strategy is a creep experiment,
where a step stress is applied resulting in a deformation of the material
over time. Similarly, stress relaxation experiments can be used to apply
a step deformation while measuring the stress in the system. The corre-
sponding constitutive equation is o(t) = [* E(t—t) x % ¢dt’. Here, the
time dependent viscoelastic modulus E(t) is replacing the scalar Young's
modulus. If a step deformation is applied, the strain rate becomes a delta

function that annihilates the integral, thus directly giving the viscoelas-
tic properties as illustrated in Fig. 1c. While giving direct access to all
timescales in one single experiment, practically this approach suffers
from a low signal to noise ratio.

Modern rheometers avoid this problem by applying an oscillating
stress and measuring the resulting time dependent strain. This results
in a complex elastic modulus G* (0) = G'(®w) + iG''(w) where the
real part G'(w) corresponds to the elastic energy stored in the material
at timescales corresponding to the frequency ® (hence storage modu-
lus) and the imaginary part G’'(w) corresponds to the energy dissipated
by the viscous deformation (hence loss modulus) [18].

For measurement on the micron-scale, as relevant for living cells,
typically a known force F(t) is applied and the resulting absolute
deformation x(t) is monitored as a function of time [21-23]. Such
experimental approaches, called active micro-rheology (AMR), give
direct access to the mechanical response function y that links
an applied time dependent force to the resulting deformation via:
x(t) = [© . y(t — t') x F(t')dt. This is equivalent to a convolution of
the force with the time dependent response function. In the frequency
domain it can hence be expressed as a multiplication of the Fourier
transforms: %(w) = 7(®) x F(®), where the tilde denotes for the
Fourier transform of the corresponding variable. The transition from
the response function to the shear modulus is provided by the
Generalized Stokes-Einstein relation [21]: G'(®) = 1/(6nR}(®)),
where R is the radius of the probe particle. This last step assumes a
homogenous and isotropic environment, which was already used
when omitting the tensor notation.

The AMR methods directly probe the mechanical properties of the
material. In contrast, passive microrheology approaches use the
thermally driven particle fluctuations to access the dissipative part of
the response function using the fluctuation dissipation theorem (FDT)
C(w) =2 " (). Here C(w) is the power spectral density that is
calculated based on the particle trajectories by taking the square of
the absolute value of the Fourier transform. Implicitly, this method as-
sumes that the particle movement is driven purely by thermal move-
ment and that the system is in thermodynamic equilibrium [24,25].
This assumption is known to be wrong in active systems such as living
cells that are constantly consuming energy and are therefore non-
equilibrium systems. For this reason, passive microrheology should
only be used with care in living cells. Typically, in the high frequency
regions fluctuations do not exhibit violation of the FDT [4,11].
Experimentally, 100 ms has been shown to be a typical timescale at
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Fig. 1. Introduction of the mechanical principles to determine mechanics. (a) A force acting on a material applies a stress that will then create a strain. Depending on the deformation, the
mechanical properties are described by a Young's modulus E, a shear modulus G or a bulk modulus K. (b) For viscoelastic materials the response can be separated into a purely elastic
deformation that is in phase with an applied sinusoidal force, or a purely viscous deformation that has a 90° phase shift with the applied force. (c) Both combined give the information
necessary to describe a viscoelastic material. The time dependent elastic moduli can be measured using step stress or strain experiments, as well as oscillating force application that

gives information about the mechanics at the frequency of the applied force.
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which active contributions emerge, both in reconstituted [4] and living
systems [11]. However, this characteristic timescale should indeed de-
pend on the cycling time of the active mechanical process, and might
also be a function of the mechanical properties of the cell. On the
other hand testing the validity of the FDT by comparing the directly
measured response from AMR with the expected response calculated
from spontaneous fluctuations is an elegant and direct way to deter-
mine the regimes of active and passive movements. For the study of ac-
tive cell mechanics, the ideal experimental access is by a simultaneous
measurement of both, the material properties such as the response
function and/or the shear modulus by stress—strain measurements as
well as the free particle motion via particle tracking. In the following
we will briefly review the main techniques used for both of these mea-
surements, with a special focus on the experimental setups that allow
easy access to both the material properties and the free fluctuations.

2.2. Active measurement of mechanical properties

The direct measurement of the mechanical material properties
requires both, a well defined force application and a precise measure-
ment of the resulting deformation. On the cell level, the most common
techniques providing this information are optical tweezers, magnetic
tweezers and atomic force microscopy. Each of these methods has
their technical advantages and limitations.

2.2.1. Optical tweezers (OT)

Optical tweezers use the gradient forces that act on polarizable
materials in the center of a highly focused laser beam [26] (Fig. 2a).
Typically, a high numerical aperture objective is used for both imaging
and focusing of the laser. To provide stable 3D trapping a high numerical
aperture objective is necessary to create sufficient axial gradient forces,
which is required to balance scattering forces that push the particle out
of the trap in the axial direction. To create a sufficient gradient force,
high numerical apertures are required, and hence typically either oil
or water immersion objectives with numerical apertures (NA) >1 are
used [27]. While oil immersion objectives can provide higher NAs, and
hence better 3D trapping they suffer from spherical aberration effects

when the tweezers are used more than 10 um away from the glass
surface. These effects can be compensated in some objectives. Water
immersion objectives do not have this inherent problem as long as the
buffer solution in the experiment has a refractive index close to water.
Therefore water immersion objectives allow optical tweezing up to
working distances of hundreds of um; however, with a slightly reduced
trap stiffness due to the lower NA. When the experiment is done in close
proximity to the coverslip, oil immersion objectives offer more advan-
tages, while experiments in bulk should be performed using water
immersion objectives. An interesting alternative is a double OT, where
two counter-propagating lasers are focused on the same spot in 3D
[28]. In such setups, the scattering force compensates and a small
numerical aperture is sufficient for stable trapping. In consequence,
long working distances up to mm can be realized [29].

Optical tweezers must be calibrated to determine the trap stiffness
to calculate the force acting on the trapped particle as a function of
the distance from the trap center. Calibration methods use the power
spectral density of free particle fluctuations via the fluctuation dissipa-
tion theorem [30,31], the drag force method using the known viscosity
of the medium [32] or Boltzmann distribution approach where the
variance of the average particle position is associated to the trap stiff-
ness of the tweezers [33]. These methods have been reviewed else-
where [34]. A further elegant method is to directly infer the force by
measuring the asymmetry of the scattered photons to directly deter-
mine the force using the conservation of momentum. This method,
however, requires that all photons are collected after interaction with
the sample which is achieved using a condenser with a higher NA
than the objective [35].

To perform mechanical measurements either the laser focus or the
sample itself must be displaced. To move the laser, piezo controlled mir-
rors [36] or acousto optical deflectors (AOD) [37,38] are commonly
used. The mirrors have the advantage that the transverse laser mode
is not influenced and the laser focus is continuously moving. The disad-
vantage of current piezo mirrors is their limited speed with maximal
movements in the order of 1 kHz, and a limited angular travel of 1-
10 mrad. Acousto optical deflectors exploit photon-phonon scattering,
where both the intensity and the deflection angle can be controlled by
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Fig. 2. Overview of the commonly used experimental methods to determine the local cell mechanics and the spontaneous particle movements. (a) Active microrheology methods provide
detailed and local viscoelastic material properties. Commonly optical tweezers, magnetic tweezers, and optical magnetic twisting cytometry are used to assess intracellular and surface
properties, while AFM typically measures the mechanics on the cell surface. (b) To determine the position of beads or organelles within cells, single particle methods image the
fluorescence or bright field image, and then fit the expected intensity distribution to the image. This allows spatial precision down to several nm, with a time resolution depending on
the image acquisition rate. Alternatively, back focal plane interferometry images the back focal plane of the condenser on a detector. After calibrating the detector response to the bead
position, this can be used to gain sub-nm precision and high-speed (up to several hundred kHz) position information.
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the intensity and frequency of a HF wave in a special birefringent crystal.
AODs allow the trap to jump to arbitrary positions within a couple of s,
hence allowing for high speed measurements. The speed of the AODs is
physically only limited by the time the acoustic wave needs to cross the
laser beam size in the AOD. This high speed can be used to create
multiple traps by rapid switching between multiple positions. If the
switching frequency is an order of magnitude faster than the corner fre-
quency of the power spectral density of the particle motion in the trap, it
can be considered to be permanent for the particle despite the tempo-
rary absence. Downsides of the AODs are that during the switching,
the laser focus is not well defined. Furthermore, if operating multiple
tweezers via time-sharing, the actual calibration has to be done careful-
ly in the same conditions as the final experiments are performed.
Alternatively to switching, multiple traps can also be generated by
superimposing several acoustic frequencies in the AOD. In optical twee-
zers, bead position is either detected using video microscopy or position
sensitive detectors [39,40].

The response function can be measured by applying either an
oscillating or a step force to intracellular particles such as endogenous
vesicles or beads [11,41]. A step force protocol rapidly moves the laser
or the stage and records the movement of the bead relaxing back into
the laser focus. Step displacements probe the temporal dependence of
the response function that can be translated to the frequency domain
by a Fourier transform. In an oscillating force protocol, either the laser
or the stage is moved with a sinusoidal function. The amplitude of this
movement depends on the actual system, however, it has to be ensured
that the applied movement is not exceeding the linear regime of the
trap, which is determined by the bead size and the laser focus. To access
different timescales, the same protocol is repeated for a series of
frequencies. By observing the bead movement relative to the laser
trap, both the applied forces, and the bead movement in the reference
frame of the cell are determined. Dividing the Fourier transforms of
the force and the displacement gives direct access to the real and imag-
inary part of the frequency dependent response function. The advantage
of the oscillating force protocol is that by modulating a sine function
with a well defined frequency, experimental and measurement noise
can be filtered out by using lock-in amplifiers [4], or during post-
processing of the data. The resulting response functions are very precise
and the accuracy can be even increased by including more oscillations in
the measurement. In contrast, the advantage of the step function is that
the experiment does in parallel access all the different timescales, hence
the experimental time is largely reduced, at the price of increased noise
in the measurements.

2.2.2. Magnetic tweezers (MT) and optical magnetic twisting cytometry
(OMTC)

An alternative method to apply well defined local forces is the
magnetic tweezers [42,43]. Here either magnetic gradient forces create
a well defined force on a paramagnetic particle [44], or oscillating
magnetic fields create a torque on magnetic particles that are typically
attached to the surface of a cell [43] (Fig. 2a). Magnetic tweezers and
OMTC have the advantage of higher forces (up to 100 nN, [45]) and
the absence of interaction between the magnetic field and the cell.
The setup requires a strong magnetic gradient that can be generated
by a variety of coil alignments [46]. Depending on the actual coil design,
open cell culture dishes are often necessary to achieve high forces [45].

In the case of OMTC, ferromagnetic beads are incubated with the
cells and attached to the surface either by specific receptors or by unspe-
cific binding. A short, strong field (<1 s,>0.1 T) induces a horizontal
magnetization in the beads. This is followed by a probe field that is
applied vertically to the cells, hence applying a torque on the beads.
This vertical field is typically weaker than the magnetization field
(<0.01 T) and can be varied with a sinusoidal function, or a step force.
With OMTGC, high frequencies (>1 kHz) can be measured by controlling
the applied oscillation frequency. The analysis of the frequency

dependent measurements follows the same signal processing methods
as described for the optical tweezers [47].

In both magnetic techniques, the bead movement is typically detected
using video microscopy, where a precise trigger of the force application
and the frame acquisition is important. Using single particle tracking
algorithms, the position sensitivity of the bead motion measurement
can be in the order of several nm. While the analysis of the response func-
tion and the shear modulus for magnetic tweezers is similar to optical
tweezers, OMTC requires a model that connects the magnetic torque
driven rotational movement to the elasticity of the underlying substrate.
In this model the actual attachment area is an important parameter that
is either taken from literature or is assessed via finite element modeling
[48]. Errors in this factor will influence the absolute results, but not the
relative comparisons.

Magnetic tweezers and OMTC have the advantage that they allow
higher forces, and parallel application for forces on multiple particles,
thus improving the possible applications and the throughput of the
measurements.

2.2.3. Atomic force microscopy (AFM)

A third, commonly used method to locally measure the mechanical
properties of living cells is atomic force microscopy. A flexible cantilever
is used to indent the cell or object of interest [49-51]. The deflection of
the cantilever is measured using a laser that is reflected off the surface of
the cantilever tip and illuminates a quadrant photodiode as illustrated
in Fig. 2a. To measure the mechanical properties of cells, the cantilever
tip is typically spherical. This allows to use an analysis model such as
the Hertz [52] or the Sneddon [53] model that describes the force as a
function of indentation depth, using the mechanical properties of the
substrate. These models are more complex compared to intracellular
particles as the interaction area increases while the cantilever indents
the cell. To asses the viscoelastic properties of the cells, a slow approach
protocol can be added to a well defined oscillation. Using lock-in ampli-
fiers this was demonstrated to access the localized frequency depen-
dent viscoelastic properties of living cells [54,55]. Big advantages of
the AFM are the large range of accessible forces, well developed com-
mercial microscopes, and a large range of possible cantilever geome-
tries. On the other hand, AFM measurements typically probe the
cellular surface and not intracellular properties. It is possible to infer
bulk properties with large indentation depths, however, interpretation
is more difficult. Also, as cell chambers are open to allow cantilever
access, special care for the correct conditions of the cells such as pH,
temperature and osmolarity must be taken. Finally, AFMs do not allow
parallel data acquisition. Still, AFMs are a main method to determine
the mechanical properties of cells.

2.3. Measuring spontaneous fluctuations

In the absence of active mechanical forces, passive techniques have
been used to successfully determine the mechanical properties of
viscoelastic materials [21,56,57,133]. These techniques rely on precise
measurement of the particle position, ideally in 3D. The trajectories of
single particles are then used to either determine the mean square
displacement (MSD), the autocorrelation, or the power spectral density,
that are used to calculate the mechanical response function using equi-
librium thermodynamic assumptions, such as the FDT. This method has
been recently reviewed in detail [58].

In the presence of active forces, the measurement of spontaneous
fluctuations provides information about both, the mechanical proper-
ties of the material but also the active forces that move the particle. In
the absence of any additional access to the mechanical properties, how-
ever, it remains complicated to distinguish between the fluctuations
that are due to the thermal agitation of the particle and the active forces
[23]. This is especially true when the active forces act in an uncorrelated
and isotropic way [59], hence showing statistical properties similar to
thermal movement. The measurement of particle fluctuations is
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typically done using either of the two main techniques: single particle
tracking and laser interferometry (Fig. 2b).

2.3.1. Single particle tracking

Single particle tracking is a well established technique that has been
introduced to determine diffusion coefficients from videomicroscopy
[60-62]. This image based technique requires the acquisition of images
either in bright field [63], or fluorescence microscopy, where the advan-
tage of fluorescence microscopy is a high signal-to-noise ratio that al-
lows for a better position measurement [64,65]. A downside of the
fluorescence acquisition is that the sample often bleaches, thus limiting
the total acquisition time. Bright field images are typically used if the
particle to be tracked provides a strong contrast, such as optically
trapped beads or magnetic beads, but can also be used on intracellular
particles [63]. The tracking can be done by a number of open source pro-
grams, that vary in complexity, and which have been recently critically
compared [39]. For the highest positional detection, modern algorithms
fit the predicted function using the microscope specific point spread
function to obtain subpixel resolution down to several nm. The big ad-
vantage of single particle tracking methods is the possibility to obtain si-
multaneously several particle traces. However, the particle tracking
may require time intensive image processing and the temporal resolu-
tion depends on the image acquisition rate. This method is typically
used in combination with magnetic tweezers, but also in many cases
for optical tweezers [11,66].

2.3.2. Laser interferometry

An alternative tracking method uses a laser that is focused on the
particle to be tracked [67-71]. After interacting with the particle, the
scattered light and unscattered light create an interference pattern in
the Fourier plane of the laser focus. This plane is imaged on either a
position sensitive detector or a quadrant photodiode, that directly
determines any asymmetry in the light illuminating the detector.
These detectors then convert the photocurrent to a voltage that is mea-
sured using modern data acquisition boards. This voltage measures the
illumination asymmetry in Ax and Ay, as well as the sum signal that
corresponds to the total amount of light detected. After recording a
calibration curve that maps the voltage difference to the distance of
the particle from the laser focus, the movement of the particle can be
followed with very high spatial (<nm) and temporal (< 10 ps) resolu-
tions [37]. This technique is directly compatible with an optical twee-
zers setup, where the laser power is simply reduced to the UW range
to prevent an influence of the particle due to optical trapping effects
[72]. Using the sum signal or an additional detector, 3D tracking is also
possible [73]. However, in case the particle moves out of the linear
regime of the calibration curve the laser or the particle needs to be re-
centered in the laser focus. This limits the method to shorter tracks,
typically of length smaller 400 nm, unless an automated repositioning
is used. The advantage of this method is that it gives directly the 3D
coordinates of the tracked particle with high spatial-temporal resolu-
tion while avoiding complex post-processing or data analysis. The
laser tracking method is commonly used in optical tweezers as the
setup requires only the addition of a position detector in the Fourier
plane of the laser focus. Recently, laser tracking has even been used to
track the complex shape fluctuations of helical bacteria [74].

2.4. Quantifying active mechanics

To get direct experimental access to the active contribution in the
movement of an intracellular particle, detailed knowledge about the
local mechanical properties is indispensable. Hence, the currently used
methods to quantify the active mechanics in living cells measure both,
the viscoelastic properties as well as the spontaneous fluctuations. It is
important that these measurements are done on the same probe
particle and without large time delay, as cellular systems vary both in
time and space. In principle, the mechanics measurement itself might

change the mechanical properties as it may trigger mechanosensing
pathways that result in a restructuring of the cytoskeleton or an activa-
tion of motor proteins [75-77].

3. Theoretical models
3.1. Purpose and types of models

To get a deeper understanding of this nonequilibrium activity it is
necessary to develop models to interpret the experimental measure-
ments. For active cell mechanics, we focus on models that seek to under-
stand what is happening at the level of the cytoskeleton and molecular
motors. Hydrodynamic theories have made significant progress to-
wards our understanding of active matter systems. These theories are
based mainly on symmetries and do not involve specific microscopic
details, and thus are applicable to a wide range of systems over varying
scales. For extensive reviews of these approaches see [9,13,17,78]. These
frameworks build on traditional hydrodynamics [79] by adding non-
equilibrium forces and are primarily used for systems that are viscous
at long time-scales. Recent theoretical advancements of active matter
built upon previous theories have been applied to systems ranging
from bacterial swarms [80,81] to large groups of organisms [82-85]. In
this review, we focus on the Langevin framework for models of active
mechanics which describes the motion of particles via a stochastic
differential equation. We use this approach because it provides intuitive
access to the model components. The Langevin approach introduces the
activity via the active nonthermal noise which requires a microscopic
description of the active process. Thus this approach is not generic like
the hydrodynamic approach, but it offers straightforward coupling
to molecular models. The purpose of this section is to do a simple
walkthrough of the Langevin framework to provide a basis for readers
unfamiliar with this topic to understand and develop their own simple
models.

3.2. Langevin approach

The Langevin approach is the application of Newton's second law to
a Brownian particle. It was the first example of a stochastic differential
equation leading to the development of new fields in mathematics
and physics [86]. Let's begin by describing Brownian motion in a purely
viscous liquid using the Langevin framework. If we apply Newton's law
(F = ma) to a Brownian particle we have the following equation of
motion,

mi = —y % +£(0) (1)

where m is the mass of the particle, x(t) is its position and X, X represents
the first and second time derivatives respectively, y is the constant
coefficient of friction, and §(t) is the stochastic force that comes from
thermal motion. In biological systems at the cell and molecular level
the inertia is typically negligible (we can ignore the mass of the particle)
and we have the overdamped form of the Langevin equation,

v x=&(t) (2)

If we solve this equation for the particle trajectory,
1 ot
Xt = [ &t x 3)
YJo

we see that the position of the particle, x(t), depends on the entire history
of the stochastic force, §(t). This means that each time you solve Eq. (3) for
the position of the particle it will be different depending on the specific re-
alization of the stochastic force, &(t), giving rise to the variation in trajec-
tories of Brownian particles (Fig. 3a). For pure Brownian motion of a
particle in a viscous liquid the stochastic force has the properties of
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Gaussian white noise where the average force is zero, (§(t)) = 0, and the
forces are uncorrelated in time, (§(1)§(t')) = Ad(t — t'), where A is the am-
plitude of the thermal forces, and 6 is the Dirac delta function. Now that
we have the properties of the stochastic force, we can derive some prop-
erties of particle motion. First let's calculate the mean position of the par-
ticle over several realizations of the stochastic force,

t
x(t) = % [ & +x (4)

= Xp (5)

because (€(t)) = 0. Thus, on average a particle stays at its original starting
point when averaged over many realizations of the stochastic force (as ex-
pected). This is not very exciting. A more exciting metric is the mean
squared displacement (MSD) of the particle which should resemble per-
fect diffusion in a purely viscous liquid. To calculate the MSD let us first
take the square of the position in Eq. (3) to get,

1 t t 2 t
Xtf =5 / ) / EE(E)dndt 5+ 2x / de®)

and by taking the properties of the stochastic force we have,

(x(0?) 4 = % / ;Adﬁ 7)
_ %t @®)

which is the familiar result that the MSD is proportional to time for a par-
ticle undergoing thermal diffusion in a purely viscous liquid. We can com-
pare this to the original result derived by Einstein [87] that {(x(t)%) = 2Dt

where D = "LVT is the diffusion coefficient. This comparison also allows us

to equate the amplitude of thermal force to the diffusion coefficient to
find the fluctuation-dissipation theorem of the second kind,

A = 2yksT (9)

showing that the amplitude of the thermal forces is directly related to the
friction coefficient and the temperature. This example shows how the
Langevin framework can be used in a straight-forward fashion to
describe stochastic motion in an intuitive way.

3.3. Models of mechanics

Once the equation of motion, x(t), is known it is possible to derive
the mechanical behavior of medium in thermal equilibrium in
two steps. First we apply linear-response theory (LRT), x(t) =
[“.y(t — t')F(t')dt’, to calculate the response of the system x(t) to a
force, F(t). Second, we apply the Generalized Stokes-Einstein (GSE) equa-
tion [88,89] to calculate the complex shear modulus which represents the
mechanical behavior of the system.

Let's first describe the mechanics of the purely viscous liquid
described in the previous section. Often times in mechanics it is more
intuitive (and mathematically tractable) to work in the frequency
domain. Eq. (2) written in the Fourier domain is,

iwyx=§ (10)

Now if we apply linear response theory, X = ¥ F, where we know

that the force acting on the particle is the thermal force (Fthermal = g)
then we can deduce the response function,
1

Z:m (11)

To get the complex shear modulus we use the GSE, G* = Gan 7 10 find
. iy
Giiquia = Gk (12)

where R is the radius of the particle. Notice if we separate the complex
modulus into its elastic (G’) and viscous (G”) components then we have,

iiquid =0 (13)
) oYy
Gliquid = R (14)

and we can see that a purely viscous liquid provides no elastic resistance
and its viscous resistance scales linearly with frequency as shown by the
open circles in Fig. 3b.

The complex shear modulus of a purely elastic solid can be derived
similarly as above. If we represent the elasticity of the material using a
simple harmonic potential (E = ~x?) then the equation of motion is,

KX =& (15)

where kis the stiffness of the harmonic potential. Applying LRT and GSE
we have,
, K

Gyglia = &R (16)

"

Gylig =0 (17)

where for a simple harmonic spring the shear modulus is not dependent
on frequency (see Fig. 3b, closed circles). This result is consistent with
the sketched representation as shown in Fig. 1, where purely elastic
response is fully in phase of an oscillating force, while a purely viscous
response is out-of phase.

Since most biological materials are not purely viscous or purely
elastic it is typically necessary to describe them as viscoelastic. Incorpo-
rating both of these effects leads to an equation of motion for a particle
that contains both viscous and elastic terms,

iOYX = — KX+ € (18)

These terms (y,K) can take on various forms to describe different
viscoelastic systems. The cytoskeleton is often described as a semi-
flexible polymer network which exhibits power-law rheology at high
frequencies with a low frequency elastic plateau [90-92]. A simple

way to describe this is to adopt a power-law memory kernel for y(t) =

fell, where 0 < < 1 is the power-law scaling, 7o is the viscoelastic

time constant, and I' is the Gamma function. Taking the Fourier trans-

formyieldsy = Kk T (i0T4)* . Following the same procedure as before
and applying LRT and GSE gives us,

/

G

viscoelastic — GTT_R [K Tg(l)aCOS(T[C\(/Z) + K} (19)

"

G

viscoelastic — ﬁ [K Tgw"‘sin(rra/Z)] (20)

as shown in Fig. 3b (squares).
3.4. Models of activity

Now that we have derived the mechanical response of the system in
the Langevin framework, we can turn to the purpose of this review
which is adding nonequilibrium forces. In the previous section on
mechanics, notice that the only stochastic force involved is thermal in
nature because the systems are in thermal equilibrium. This is because
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material properties are typically defined for materials in thermal
equilibrium. For systems that are out-of-equilibrium, such as biological
systems, there are additional forces coming from processes occurring
inside the cell (e.g. molecular motors and polymerization). The advan-
tage of the Langevin framework is that additional forces can be intui-
tively incorporated into the equation of motion of the particle [131].
As an example, let us add a stochastic force that is non-thermal in origin
to the right side of the equation of motion for a viscoelastic material.
Thus we have,

iOY% = — KX+ €+ f, (21)

where f, is the stochastic active force. The active force can be modeled in
many ways to account for different physical systems. Using this
approach, a molecular scale model of the active force can be developed
and incorporated into the Langevin framework. Additionally, if the form
of the active force is too complex to be solved analytically, it can
straightforwardly be explored via simulations. Thus predictions for the
average dynamics of objects inside the cell can be calculated, allowing
close comparison between experiments and theory. As an example,
we will present a simple minimal model for the active force, f4, that
has been described previously [93,94] and is illustrated in Fig. 4a. This
model describes the force contribution from molecular motors that
actively kick the particle and cause it to move around randomly. The
force due to this motion can be expressed as, fy = Kfva(t’)dt’ where v,
is the active velocity described by a random process that equals O for
an average duration of 7o and is a uniform random value over [—v, V]
for an average duration of 7. The statistics of v4 reflect molecular
motor statistics and are a zero mean non-Gaussian process with corre-

lations: (va(t)va(t')) = kgTaexp(—|tl/T)/(Ty) where kT, = 5 H‘)D) is
the effective active energy scale [93,94]. A representative realization of
the motor force kinetics is shown in Fig. 4b.

Now that we have the equation of motion for a particle in a
viscoelastic material subjected to an active stochastic force we can
explore some of the system properties. A common way to quantify the
nonequilibrium properties of a system is to calculate its effective energy,
which quantifies deviation from equilibrium. This requires combining

information from the mechanical response, 7' (), and the spontaneous

fluctuations, C(w) , of the particle motion where C(o)=
J{x(t)x(0))exp(iowt)dt is the power spectral density of position fluctua-

tions. The effective energy is basically the ratio of these two, Eef =

(o)
2 (o)

in units of kgT. In the experimental measurements the response

o1

g(t) g”‘wlﬁ%} Feef? ‘hdfjﬁwTr% -‘h‘?
\
_50 1l0 2‘0 3;0 4:0 50

/Lf'd“'ﬁf\i@ Q\HJ( D
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is calculated from active rheology and the spontaneous fluctuations
are from particle tracking. For our example theoretical model this can
be calculated as,

1 ksTs

Eer(@) = kT (wTr)Z 1—0—(—(1)7')2

(22)

where 7, = y/kis the relaxation time of the surrounding material, and it
is clear if T is zero the system is in thermal equilibrium (Fig. 4c). While
the effective energy provides a way to quantify the deviation from
equilibrium, it does not directly provide insight into the active forces
generated in the system. To gain insight into the active mechanics we
must look at the force correlations. First, let us note that the total force
driving the system is the sum of the active force and thermal force,
Frot = f’A + é Following the derivation above we can find that the
mechanical properties of the system are, G* = gz (k + i®Yy), where K
and vy are constants for simplicity that are related to the elastic and
viscous properties of the system. This framework now allows direct
access to the active force spectrum that is generated exclusively from
nonequilibrium sources. To look at the active forces we calculate
its power spectrum (i.e. the Fourier transform of the time correlation
function (f4(0)fa(t'))),

1 Z’YkBTA
(01?1 + (0T)?

Sactive (0)) = (23)

as is shown in Fig. 4d [93]. Thus it is clear that the mechanical properties
of the surrounding material also contribute to the active forces. Again,
notice that if the system is in equilibrium, T, = 0, then the active force
spectrum would be zero. The analytical expression of the active force
spectrum can be fitted to the experimental measurements to extract
the characteristic timescale, 7, of the molecular process driving the non-
equilibrium behavior. This provides a connection between the observ-
able motion of a tracer particle and the underlying stochastic driving
forces.

Recent developments in stochastic thermodynamics leverage the
Langevin framework to allow quantification of the rate of energy dissi-
pation [95]. Energy dissipation is a fundamental property that charac-
terizes non-equilibrium steady-state systems and allows comparison
between different model systems. The Harada-Sasa equality relates
the violation of the FDT to the amount of energy dissipated in the
system. Therefore, if violation of FDT can be measured and modeled,
the energy dissipation can be directly calculated and related to a

10° 10 10° 10° 10*

Frequency (Hz)

Fig. 3. (a) One realization of the stochastic thermal force is shown to illustrate the time course of a zero-mean Gaussian process (&;, top panel). The trajectory of a particle, x(t), is found by in-
tegrating the random thermal force, §(t), over time as shown in 3 separate realizations (lower panel). (b) The complex shear modulus is shown for three different models of mechanics. A purely
viscous liquid has dissipative modulus, G”, that scales linearly with frequency (open circles). A purely elastic solid has an elastic modulus, G/, that is frequency independent (closed circles). A
viscoelastic material exhibits intermediate behavior with frequency dependent elastic and dissipative moduli.
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molecular scale model. In this framework the dissipation in the system
is the work done by the particle on the surrounding environment. The
mean rate of energy dissipation is,

Jaiss = <X ('YX 7€)> (24)

where x is the particle velocity. J4;ss can be thought of as the difference
between the power dissipated by the particle drag force (7yx) and the
power injected by the thermal force (§). In an equilibrium process,
these two powers are equal as a consequence of FDT, and thus Jgiss
would be zero. Harada and Sasa showed that the dissipated power
in a nonequilibrium steady state system can be calculated from the
correlation and response functions [95],

Jass = [ dofoC(@) + 217 (©)]o/2n (25)

where C(o) is the power spectral density of the position fluctuations

and j(” (o) is the imaginary part of the response function. Since all the
terms in the Harada-Sasa relation can be measured experimentally
and modeled theoretically, it provides a direct way to compare experi-
mental and theoretical results of local power dissipation in nonequilib-
rium steady-state systems. Since power dissipation is a fundamental
thermodynamic quantity it is possible to relate these measurements
to the mechanical efficiency of a process.

4. Nonequilibrium biopolymer mechanics

The theoretical tools in the previous section provide a useful
framework to understand the complex mechanics of nonequilibri-
um biopolymers and reconstituted in-vitro networks provide a
simple experimental system to probe their behavior. It is known that
external stress/strain applied to reconstituted biopolymer gels can
lead to both softening and stiffening. Complex interactions at the local
molecular scale can give rise to bulk changes in behavior even without
active forces. Stress-softening has been attributed to local buckling of
actin filaments [96], force induced rupture of cross-links [97], and non-
linear force response and filament turnover [98]. Stress stiffening has
been shown to be due to network structure [99,100], dynamic re-
binding of cross-links [101,102], and cyclic-loading [103].

4.1. Softening

An entangled polymer solution naturally exhibits viscoelastic
mechanical behavior. If molecular motors are added to the entangled
polymer, its properties can be actively modulated. Myosin-II motor
activity in a solution of entangled actin filaments will significantly
shorten the stress relaxation time leading to fluidization of the material
[3] (Fig. 5a). Myosin-II motors interact with the actin and allow fila-
ments to slide longitudinally past each other leading to bulk fluidization.
A theoretical model shows that the active forces generate directed
reptation of the polymers leading to fluidization [104]. Together, these
studies indicate a way that internally generated active forces can tune
the bulk mechanical properties of the material without physically
changing its building blocks. A similar study showed that adding
cross-linking can increase the energy dissipation in active actin net-
works at short timescales while still allowing fluidization at longer
times [105]. This points to the high sensitivity of biopolymer network
mechanics to motor activity and cross-linking which can provide a
way to tune the material properties [ 106]. In addition to tuning material
properties, myosin-II motors have been shown to buckle, fragment, and
depolymerize actin filaments, directly changing the network and lead-
ing to stress relaxation [107-109]. These controlled in-vitro studies
show possible mechanisms that living cells could utilize to tune their
mechanical behavior. In living cells it has been reported that force appli-
cation fluidizes the cell mechanical properties [110] as measured by

magnetic twisting cytometry. Direct measurement in living cells is
sparse, however some studies have shown that applied deformation
may also lead to decreased cytoplasmic resistance [111,112]. And met-
abolic activity was shown to fluidize the cytoplasm and facilitate motion
of larger components in bacteria cells [113]. Another recent study has
used several different measurement techniques to show that myosin-
Il activity softens cells in suspension [114]. Further measurements and
theories are necessary to understand these processes at the molecular
level.

4.2. Stiffening

Stiffening due to motor activity is also a common observation. A
landmark study of nonequilibrium mechanics in active actin-myosin
gels showed that cross-linked networks stiffen (by up to 100 x) due
to the action of molecular motors [4] (Fig. 5b). A theoretical model
showed that even small forces generated by molecular motors in a
semi-flexible gel (exhibiting nonlinear elasticity) lead to a strong
stiffening of the network [115,116]. It has been suggested that cells
operate in this highly sensitive nonlinear regime such that small
changes in motor activity allow them to modulate their mechanical
response greatly [5]. Interestingly, a recent study created an active
gel using noncytoskeletal components (DNA and FtsK50C) and
found similar results, highlighting that the observed behavior is not
specific to actin and myosin [118]. Similar behavior has been ob-
served indirectly in living cells. Single platelet cells increase their
bulk stiffness when allowed to contract between two rigid surfaces
[119]. In living oocytes the stiffness of the cortex is maintained by
myosin-II activity, and it dramatically softens if these motors are ex-
cluded [120]. And in the cytoplasm of cultured cells the stiffness has
also been shown to decrease when myosin-Il motors are deactivated
via blebbistatin [11]. It is important to mention that the studies
discussed here in living cells make direct force measurements,
which allow direct access to the mechanical properties. Generally,
it should be noted that studies in living cells must be interpreted
carefully since their response to pharmacological treatment and ge-
netic tools is often highly sensitive to dosage and recovery time.

4.3. Active organization

In addition to nonequilibrium mechanics, an interesting property
of active matter is its ability to dynamically self-organize. High-
density motility assays of actin filaments, myosin-II motors, and
cross-linking proteins have shown a wide range of self-
organization phenomena ranging from large-scale polar structures
to contracting networks [121]. Collective motion emerges from the
random molecular motor activity on polar actin filaments leading
to coherent moving structures with clusters, swirls, and intercon-
nected bands due to hydrodynamic coupling between filaments
[122,123]. These complex interactions also give rise to frozen
steady-states and giant fluctuations in density [124,125]. Beyond
these dynamic moving structures, active actin-gel networks can
also form quasi-static heterogeneous structures in the form of clus-
ters of different sizes [126]. Interestingly, studies of active matter
consisting of microtubules and kinesin also show active organization
that is quite different from actin-myosin gels. Bundles of microtu-
bules containing hundreds of kinesin motors spontaneously syn-
chronize their motion and generate large-scale oscillations [127],
suggesting that only two-components are sufficient to create cilia-
like beating. When the microtubule-kinesin network is assembled
inside an emulsion droplet, it exhibits internally driven chaotic
flows leading to fractures and self-healing of microtubules and also
drives autonomous motility of the droplet [128]. To mimic cellular
structures the microtubule-kinesin network was encapsulated in a
lipid vesicle where it exhibited periodically oscillating active ne-
matic defects and shape-changing dynamics with filopodia-like
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Fig. 4. (a) A schematic diagram of the viscoelastic material with motor-driven activity. The surrounding medium provides local confinement of particles modeled as a harmonic potential.
Particles embedded in the material undergo thermal fluctuations with a mean position of xo. In addition, molecular motors inject nonequilibrium activity into the system and push the
particle further from the equilibrium position giving rise to additional forces that are nonthermal in origin. (b) Molecular motor statistics are modeled as an active burst where they
have a velocity v4, which is a random value between —v and v for a random duration of order 7 followed by a velocity of 0 for average duration 7, (top panel). The example realization
of active burst activity results in the active forces shown in the lower panel. (c) The effective energy quantifies how far the system is from equilibrium. The activity is determined by
the motor kinetics, where faster 7 results in deviation from equilibrium at higher frequencies. (d) The active force spectrum quantifies the forces generated by the motor-driven activity.

In the presented model faster motor kinetics, 7, result in higher active forces.

(b) Reprinted with permission from [94] Copyright (2014) by the American Physical Society.

protrusions [129]. These reconstituted active matter systems bring us

closer to understanding how cells utilize activity to organize their func-
tional structures. A recent example was observed in living oocytes

where coordinated molecular motor activity generates a gradient

force to center the nucleus at the cell center [130].
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cytoskeletal structure, organization, and dynamic behavior they
must constantly consume and dissipate energy. By understanding
how this nonequilibrium activity drives self-organization we will
gain a deeper understanding of biophysical processes at the molecu-
lar scale. The emerging experimental and theoretical frameworks to
probe nonequilibrium mechanics will allow direct quantification of
activity in living cells and allow us to dissect the complex underlying
processes. These same techniques can also be applied to synthetic or
reconstituted systems to understand fundamental processes in non-
equilibrium physics. This interface between living cells and synthetic
systems will undoubtedly lead to the design and engineering of new
bio-inspired materials with advanced functionalities.
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