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Abstract

We study the entropy production rate (EPR) of aligning self-propelled particles which undergo a
flocking transition into a state of polarized collective motion. In our thermodynamically consistent
lattice model, individual self-propulsion is the exclusive source of irreversibility. We derive the
fluctuating hydrodynamics for large system sizes using a controlled coarse-graining: our procedure
entails an exact correspondence between the EPR evaluated at the hydrodynamic and
particle-based levels. We reveal that EPR is maximal when the system adopts a homogeneous
configuration, either apolar or polar, and reduced in the non-homogeneous state where a polar
band travels in a apolar background due to strong spatial EPR modulations. By analyzing the latter
we also show that asymmetric energetic exchanges occur at the trailing and leading edges, which we
map into a thermodynamic cycle in density-polarization space. Finally, we demonstrate that the
regime of weak self-propulsion features a singular scaling of EPR, and a non-analyticity of the
travelling band profiles.

1. Introduction

Active matter systems feature constant injection and dissipation of energy at microscopic scales [ 1, 2]. Within
this broad class, systems of self-propelled particles play a prominent role, for example as models for bird
flocks [3], bacteria [4], or catalytic colloids [5]. The dissipation associated with these particles’ motion—and
the associated entropy production—quantifies the departure from equilibrium [6, 7] and is at the heart of
the fascinating collective phenomena in active systems. Studying dissipation has provided insights into
transport, response and structural properties [7, 8], and also shed lights on the mechanisms at the basis of
some nonequilibrium collective phenomena [9-12]. Moreover, conditioning trajectories on non-typical
values of dissipation can induce novel collective behaviors [13-19].

The framework of stochastic thermodynamics allows quantification of dissipation based on the
breakdown of time-reversal symmetry, under the general modeling assumption of local detailed
balance [20-23]. In this case, the steady-state dissipation rate represents the heat flowing from the system to
the surrounding energy reservoir (namely, the thermal bath), and coincides with the product of the entropy
production rate (EPR) of the system and the temperature of the reservoir. Calculations of such quantities for
active systems are already difficult for a single particle [24-26], and even more challenging for interacting
particles [27-31]. As an alternative modeling perspective, many-body systems can be described at a
coarse-grained level by field-theories [1, 2], in which the informatic EPR (IEPR) measures the breakdown of
time-reversal symmetry at the hydrodynamic level [9, 32, 33]. In general, this hydrodynamic IEPR does not
match the microscopic dissipation of the individual particles because of the coarse-graining [9, 10, 28, 34,
35]. It is also insightful to examine the spatial decompositions of both the dissipated heat and the IEPR [28,
31], although this procedure is generally ambiguous for field theories [7, 36].

For active systems exhibiting motility-induced phase separation (MIPS), the dissipated heat and the IEPR
have both been studied extensively, both microscopically and at the field theoretic level [6, 7, 9, 10, 31, 36,
37]. For one particular lattice based model, it was shown recently that the microscopic dissipation is
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successfully captured by an exact hydrodynamic field theory [18, 19]. For models of aligning
particles—which exhibit flocking [38, 39]—several works [8, 11, 12, 40] have investigated dissipation, and
rates of entropy production. In some of these models [8, 11, 12], the dissipation is maximum and singular at
the flocking transition. However, these models either lack a direct link to a microscopic dynamics with a well
defined dissipation, or are thermodynamically inconsistent. In particular, dissipation does not vanish at zero
self propulsion [8, 11, 12].

As a step towards resolving these difficulties, a key motivation of this work is to analyze the
hydrodynamic IEPR while maintaining the connection to microscopic dissipation in a thermodynamically
consistent way. Specifically, we analyze a model of flocking for self-propelled particles [41]. The model is
thermodynamically consistent since the self-propelled dynamics respects local detailed balance. This
property entails that the dynamics reduces to equilibrium in the absence of self-propulsion. Moreover, we
derive macroscopic equations of motion for the hydrodynamic fields with an exact coarse-graining.
Analyzing the corresponding IEPR, we find—differently from previous flocking models [8, 11, 12]—that
dissipation does not peak at the ordering transition.

This paper is organized as follows. In section 2, we recapitulate the phase behavior of the flocking
model [41], derive the fluctuating hydrodynamics with sub-leading noise terms, and analyze the weak
self-propulsion regime close to equilibrium. In section 3, we first show that the IEPR of the fluctuating
hydrodynamics coincides with the dissipated heat. Since these two quantities are equal (up to a factor of
temperature), we henceforth refer to them both interchangeably as the EPR, except where a specific
distinction is necessary. We show that the EPR is maximal in the homogeneous states (either disordered or
ordered), whereas travelling bands are associated with a lower EPR. For travelling bands, we examine the
spatial decomposition of the mean EPR, which we interpreted as thermodynamic cycles where active forces
drive currents up and down free-energy gradients. Finally, we study the weak-activity scalings to elucidate
the mechanisms sustaining nonequilibrium phase separation. These results are derived within the framework
of a specific model, but we explain that they also provide generic insights. They also suggest that
thermodynamically-consistent flocking models are a relevant platform to study the energetics of
nonequilibrium patterns in a broad class of active matter.

2. Flocking far from and close to equilibrium

In this section, we give a brief summary of the phase diagram featuring the flocking transition of our active
lattice model and its hydrodynamic description, as already introduced in [41]. We also present some
additional results on the fluctuating hydrodynamics, and the phase behavior close to equilibrium.

The key ingredients of this model are that particles self-propel by a non-equilibrium mechanism, and
they feel an aligning interaction due to conservative pairwise forces (or torques). This combination would
likely be appropriate for self-propelled catalytic colloids or bacteria; on the other hand there is no reason to
suppose that birds in flocks have equilibrium-like aligning interactions. It is important for the calculations
that the particles move on a lattice, but the macroscopic description is given by a continuum theory, so
comparison with experimental (off-lattice) systems is possible at this hydrodynamic level.

2.1. Lattice model of aligning motile particles

The thermodynamically consistent flocking model comprises, like other discrete symmetry flocks [42, 43],
two species of particles (type o = %1, although we sometimes write ¢ = 4, —) which hop with a bias to the
right or left (respectively) on a periodic lattice of L >> 1 sites, see figure 1. We focus on a one-dimensional
lattice but our fluctuating hydrodynamics can be trivially extended to higher dimensions. The dynamics
allow multiple occupancy, so that each site i can have any number of particles. The total number of particles
in the system is N = pyL, where py is the mean density.

The dynamical update rules consist of diffusive hops biased by self-propulsion, and spin flips o — —o. In
the absence of self-propulsion, thermodynamic consistency of the model requires that its dynamical rates
respect detailed balance with respect to an energy function H, whose precise form will be given below. With
this choice, the zero-propulsion model has a time-reversal symmetric steady state associated with a vanishing
dissipation rate. Previous flocking models do not have this property [42—45]. Self-propulsion is then added
as a weak bias of hops in the direction of the particle orientation, yielding the following update rules
(figure 1(a)):

(i) Site hopping: a particle on site i with orientation ¢ jumps to the neighboring site i 4= 1 with rate

wy (i— i+ 1) = Dgexp B (?—ﬂAH)], (1)
o
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Figure 1. Summary of results from [41] for the lattice model of thermodynamically consistent flocking. (a) Illustration of model:
each particle can be in either one of two states (+ and —) which determine the direction of biased diffusion (respectively to the
right and left). The aligning Hamiltonian H (equation (3)) constrains both the change of particle states and their diffusive hops.
(b) Phase diagram at finite activity (Pe = 0.5). The colored dashed and solid lines represent the spinodals and binodals,
respectively. (c) Profiles of density and magnetization (respectively, p and m) corresponding to a travelling band, obtained by
simulation of the deterministic hydrodynamics (equation (12)) with Pe = 0.5, pg ~ 3.62, 37! ~ 0.71 and £; = 300. The arrow
indicates the direction of band propagation. Reproduced from [41]. © The Author(s). Published by IOP Publishing Ltd.

CC BY 4.0.

where AH is the energy difference between the configurations of the system before and after the jump®.
(ii) Tumbling: a particle changes orientation o — —o with rate (vy/ Lz)e*ﬁTAH

In these rates, Dy is the bare diffusion constant, A is the self-propulsion strength, -y sets the tumble rate,
and (3 is the inverse temperature. The physical interpretation of equation (1) is that the work done by the
self-propulsive forces in a single hop from i to i+ 1is Ao /(BLDy): then w,, is consistent with the principle of
local detailed balance [20-22]. In particular, provided that the self-propulsion is fueled by some underlying
chemical reactions, one can set A proportional to the difference of chemical potentials for the reactant and
product species [31, 46]. Unlike their hopping, particles’ tumbling rates respect detailed balance with respect
to the Boltzmann distribution for the energy H. Physically, this means that the only source of external work is
particles’ self-propulsion, which influences hopping but not tumbling. The L-dependence of the rates
(including the suppression of tumbling by a factor of L?) is standard in lattice-based diffusive models [47,
48]: it ensures that all processes occur on diffusive time scales in the hydrodynamic limit (L — oo at fixed po).

The energy H describes interactions between particles. To obtain exact results at the fluctuating
hydrodynamic level, we take these interactions to be long-ranged but weak. Specifically, we introduce the
mesoscopic scale Ax = L%, with 0 < § < 1, which is sub-extensive in system size while containing a large
number of particles (that is, 1 < Ax < L). The interaction range in H is given by Ax, and it also
corresponds to the scale over which we coarse-grain the density to obtain a continuum description in the
hydrodynamic limit. In particular, this interaction range enables a phase transition in one dimension even at
equilibrium: see [41] for further details.

To define H, we denote by 77i+ and n;” the number of + and — particles at site 7, respectively. We
introduce meso-averaged occupancies for the density and magnetization variables in the vicinity of site i as

+ - +_ -
P 2Ax ’ ! 2Ax '

(2)

4 To obtain the model defined in [41] one replaces o'\ in this expression by 220 (o' \) where © is the Heaviside (step) function. The two
models have identical hydrodynamic behavior, we choose equation (1) here so that the self-propulsion and energetic terms enter on an
equal footing.
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We choose the aligning Hamiltonian to take the form

2
i

L
H==3"Tie(5). 9
i=1

§>

For g(p) = 1, the ith term in the sum is an Ising-like Hamiltonian with interactions of equal strength among
all particles within range Ax of site i. Alternative functional forms for g(;) modulate the alignment strength
according to the local density [41].

In the active Ising model (AIM) [42, 44], a non-trivial modulation of the effective interaction strength
with density naturally emerges: it can be described as a renormalization effect that captures the effect of
fluctuations [45]. To qualitatively reproduce this effect, we choose

1
g(p) P (4)

Other forms of g can be motivated on account of different types of nearest-neighbor interactions [43, 49-52].

2.2. Phase diagram: apolar gas, polar liquid, and travelling band

The definition of the model is summarized in figure 1(a). Its phase diagram (for finite self-propulsion) was
derived in [41], and is shown in figure 1(b). It features three phases, which can be characterized in terms of
the large-scale behavior of density and magnetization (equation (2)): (i) a homogeneous disordered phase
(H; m = 0), where both density and magnetization are homogeneous; (ii) a homogeneous collective motion
(C.M.) phase, with non vanishing magnetization resulting in a net density flux, and (iii) a travelling-band
state (T.B.) which displays macroscopic phase-separation between different discrete symmetries (11 =0 and
m #0). In case (iii), the density and magnetization vary in space and time as

p(x, 1) =p(x— Vi), m(x,t) = m(x— Vi) (5)

where V is the velocity of the band and (p,m) describe the travelling profile. We refer to the dense and dilute
parts of the travelling band as liquid and gas phases, respectively, by analogy with equilibrium
phase-separation.

The (binodal) densities of the liquid and gas phases are denoted (p;, pg) and their corresponding
magnetizations are (1, mg). The liquid phase is ordered (1 # 0) while the gas is disordered (1, = 0). The
magnetized bulk phase attains a non-vanishing density current, but the disordered phase has none. Hence
particle conservation implies that the interface must propagate with a velocity proportional to the current in
the magnetized phase. Hence, the sign of V is the same as the sign of m;.

The transition between disorder and C.M. is discontinuous, and always proceeds through the T.B. state.
The same phase behavior is observed for AIM and its recent variants [43, 44]. The miscibility gap where T.B.
emerges is characterized by two spinodals marking the linear instabilities of the two discrete-symmetry states
(m =0 and m # 0), whose analytical derivation can be found in [41]. In the absence of a free-energy
minimization principle, there is no simple recipe to establish the binodals in the nonequilibrium case. These
are identified numerically from the density profiles (figure 1(c)).

Our previous study [41] explored some different types of phase diagram that emerge if ¢ in equation (4)
is replaced by a non-monotonic function. A particular choice can lead to a phase diagram with an azeotropic
point and some reversed bands, reminiscent of the states reported in some other hydrodynamic studies [53,
54]. However, we restrict here to the simplest choice in equation (4), which is sufficient to reveal the relevant
behavior of the IEPR.

2.3. Deterministic hydrodynamics for density and magnetization

We present the deterministic hydrodynamic equations that describe the thermodynamically-consistent
flocking model on macroscopic length scales. Their derivation follows [41]. We define the typical length scale
for diffusive motion &4, the persistence length due to self-propulsion £, and their ratio, the Peclet number
Pe, quantifying the relative contributions of self-propulsion and diffusion:

§a=L\/Do/7y, & =AL/y, Pe=¢&,/8i=\/\/7Dy, (6)

Here, £, is the mean distance travelled by a particle between tumbles due to its self-propulsion; also &, is the
typical distance travelled by diffusion, in the same time.
We perform spatial coarse-graining introducing the scaled position x = i/£; € [0, {;), so that

ts=L/&a=/7/Do (7)

4
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is the system size in the hydrodynamic representation. Within this choice, the interfacial widths of phase
separated profiles are of order 1, and we take /; > 1 so that the system is large compared to this interfacial
width. In addition, we make a diffusive scaling of time by setting

t= ¢ (8)

with f the time variable of the microscopic system. Hence, in these hydrodynamic units, particles flip their
orientations with unit rate.
The local density in the vicinity of point x is defined from the mesoscopic coarse-graining (equation (2))
as
p(xat):ﬁ’l%(t)v m(x,t):ﬁ’ll(t). 9)

xL
s

The fields (p,m) obey deterministic equations in the hydrodynamic limit (L — oo). Since p is conserved and
m is not, these equations take the generic form

op| Io 0
arl=-alr] -4 10)
where (J,,],;) are the conservative fluxes, and K is the net rate of change of the density of — particles due to
spin flipping. The definition of hydrodynamic fields in equation (9) implies that p(x, t) is the locally averaged
occupancy of the site at position x, and the lattice spacing is £/L: then, the number of particles in [x,x + h] is

(L/¢;) fxx+h dxp(x). It follows from equation (10) that the (net) number of particles passing to the right
through point x is (L/¢s)],,(x, t) per unit time. For travelling band states, the velocity V in equation (5) reads

m

V =Pe ,
P1L— Pg

(11)

as a consequence of mass conservation.
The fluxes (J,,, /s, K) fluctuate around their most likely values, denoted by (J,, /s, K)’. To leading order in
system size, these read

(12)

where C and M are mobility coefficients given by

com=2|r "] Mipm) =7 (13)

m p

The free-energy functional is defined in units of the temperature (37'):

L ("
Flpm) =7 [ &7 (p(x).m(x) (14)
sJo
with free-energy density
F( m)—Blnpz_szrTanr—m— —ﬂm—z() (15)
pym) =3 1 i, 0,80,

so that dF/0p = (L/4;)(OF /Op), and similarly for m derivatives.
The hydrodynamics in equations (10)—(12) describes a broad class of thermodynamically consistent
active models [41]. For the particular choice of interactions in equation (4), the dynamics become

Ohp = s [am 8 (”faxp - ”Zaxm) - Pem] ,
p p
Oym = 0, [Oym + B (A (p,m) Oxp + B(p,m) Oym) — Pe p]
—2mcosh [Bm(p—1) /p*] 4+ 2psinh [Bm (p— 1) /p*],

(16)

> Note, the overbars on ], K indicate most likely values of these quantities, dependent on (p, m). This notation is distinct from overbars
on (p,m) in equation (5) which are specific to the steady state.

5
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where
A(p,m)=m(p* =20 +3m> —m’p) /p*, B(p,m) = (m*p—2m*+p*—p’) /p’. (17)

The diffusive fluxes in equation (16) include (i) a linear diffusion term, stemming from the entropic
contribution in F (equation (15)), (ii) some non-linear diffusion terms proportional to 3, stemming from
the energetic contribution in F, and (iii) a self-propulsion term proportional to Pe. The separation of these
contributions will prove useful when formulating a decomposition of the IEPR (section 3.2). In particular,
the equilibrium hydrodynamic model simply follows by setting Pe = 0, and corresponds to a non-ideal
reaction-diffusion system [55, 56].

2.4. Path-probability representation of hydrodynamic fluctuations
The deterministic hydrodynamics (equations (10)—(12)) has been previously derived in [41]. We now extend
that work by also deriving the sub-leading noise terms that complement these equations. For passive lattice
gasses, such corrections are well known within macroscopic fluctuation theory (MFT) [57]. Extensions to
active gasses appeared recently for related models [58, 59]. For thermodynamically consistent dynamics, the
exact form of the noise can be anticipated from the deterministic description (equations (10)—(12)), as we
discuss below.

In general, hydrodynamic fluctuations can be written in terms of the probability of a given trajectory X
of the hydrodynamic fields (p, m) and the corresponding fluxes (J,, J;, K), which we denote by

X = {p('x? t) , M (X, t) a]p (X, t) ,]m (X, t) ,K(.X, t)}xE[O,&],tG[O,T] ) (18)

where T is the trajectory duration measured on the hydrodynamic scale, not to be confused with the
temperature 3. For any trajectory, the fluxes (J,, ], K) always obey equation (10), but they differ in
general from the deterministic values in equation (12). The probability P of such a trajectory is given in
terms of the path action A as

P(X) e &AW, (19)

We do not consider any contributions from the initial condition of the trajectory, which are negligible in
steady states. Since the hopping and flipping moves are independent (section 2.1), the fluctuations of (J,, /)
and K are uncorrelated. Then, the path action can be expressed as an integral over two additive Lagrangian
densities (L, Lk), that respectively embody the diffusive and tumbling fluctuations:

T A
A= / dt/ dx ([:] + E[() . (20)
0 0

Interestingly, the expression of (£, Li) can be directly deduced from the knowledge of the free energy
(equation (15)) and the mobility coefficients (equation (13)). We summarize the results here, see appendix A
for a more detailed discussion.

The diffusive scaling of space and time (section 2.3) ensures that the fluctuations of (J,,/,,) are Gaussian
at the hydrodynamic level [57]: it results in a Lagrangian £; which is quadratic in the deviations from the
flux average values (J,, /). In equilibrium (Pe = 0), local detailed balance prescribes that the corresponding
quadratic form reads

— 1— —
et om =3 3 e [0 @
where the mean fluxes (J,,,/,;) and the mobility matrix C depend on the fields (p,m) (equations (12)

and (13)). The expression in equation (21) also holds for finite Pe > 0, since the self propulsion enters only as
a weak bias in the microscopic dynamics (section 2.1): this scaling ensures that local detailed balance is
maintained to leading order, as a general result in diffusive lattice gases [48].

The tumbling rates are much slower then the fast diffusive swaps (section 2.1). As a result, the
corresponding fluctuations remain non-Gaussian at hydrodynamic scales even after diffusive scaling [48].
The corresponding Lagrangian Ly can be expressed as the difference between the large deviation functionals
of two Poisson processes associated with tumbling (£ — F) [48, 60, 61]. The resulting expression, which is
compatible with the detailed balance constraint, is given by

Ly (K, p,m) = VM2 LR -/ MR+ K arcsinhA—IZ—arcsinhA—IZ ) (22)

6
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Figure 2. Phase diagrams (a) at equilibrium (Pe = 0) and (b) close to equilibrium (Pe = 0.08). The faded blue and red curves in
panel (b) represent the binodals of the equilibrium limit in panel (a), terminating at the tricritical point (8~! = 8. In panel

tri
(b), the binodal gap extends above the tricritical temperature (37! > B;l). (c) The binodal gap p; — pg and the liquid

magnetization rmy, evaluated from the numerical solution of the deterministic hydrodynamics (equation (12)) at varying Pe and
for 37! = 0.8. The blue and orange lines have slopes 1/2 and 1, respectively, following the analytical predictions (equation (24)).
Reproduced from [41]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

As for the diffusive Lagrangian £;, the mean flip rate K and the mobility M explicitly depend on the fields
(p,m) (equations (12) and (13)). Recalling (12), we note in passing that

Lx (K, p,m) — Lx(—K,p,m) =—2K—— . (23)
om
This relation between tumbling action and free energy arises because the microscopic tumble rates obey
detailed balance [48, 60, 61].

2.5. Phase behavior close to equilibrium

Some of the results of this work analyze the IEPR for small Pe. To facilitate this analysis, we derive here some
properties of the phase diagram (figure 1(b)) for Pe < 1. We first summarize the equilibrium phase diagram
(figure 2(a), Pe = 0) which lies within the universality class of Model C [41, 62] and describes ferromagnetic
liquids [63—65]. The stable phases are found by minimizing the free energy (equation (15)) under the
constraint of conserved density (1/£;) foes pdx = py. At high temperatures (3~ > .;'), a continuous
transition line, separating the disordered homogeneous (H; m = 0) and ordered homogeneous (H; m # 0)
states, terminates at a tricritical point. At low temperatures (37! < Bt:il ), the transition between disordered
and ordered states becomes discontinuous, and a static phase separated state (P.S.) emerges with a
coexistence between the two discrete symmetry phases (m =0 and m # 0). The binodal curves, delineating
the boundaries of the miscibility gap, follow from common-tangent construction and meet at the tricritical
point [41].

Any finite self-propulsion propulsion (Pe # 0) has a non-perturbative effect on the phase diagram (see
for example figure 2(b) which shows Pe = 0.08). In particular, the behavior for high temperatures
(87! > B.;') changes qualitatively, in that the equilibrium system (Pe = 0) features a critical line, but for
Pe # 0 one sees two binodals separated by a miscibility gap. That is, the binodals that previously merged at
B! now continue into the high-temperature regime.

Fixing Pe, we denote the binodals p;(3) and p,(/3) for the liquid and vapor, respectively; the
corresponding spinodals are ¢;(/3) and ¢4(/3). We argue in appendix B that, for small Peclet, the gap between
the spinodals scales as ¢;(/3) — g(/3) ~ Pe. We expect on general grounds that the gap between the binodals
has the same scaling, which leads (see again appendix B) to®

(pl — pg) ~Pe, m~ Pel/z7 Ve~ Pel/z, for !> B;il, (24)

where my is the magnetization of the liquid phase in the travelling band. Note that the band velocity

V ~ Pe'/? is much faster than the typical speed of an individual particle (which scales as Pe): this collective
enhancement of velocity is possible because of the small density difference between the phases. Also,

m; > (p1 — pg) implies that the density of the minority species in the liquid phase is reduced with respect to
the gas. Figure 2(c) shows that these scalings agree with numerical simulations of the deterministic
hydrodynamics.

6 The notation A ~ Pe® has the same meaning as A = O(Pe®).

7
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Figure 3. (a) Profiles of density and magnetization with the leading and trailing interfaces in solid and dashed lines, respectively.
The green dot marks the point where the interfacial profile crosses the spinodal values (p = ¢g,m =~ 0). (b) Plot of the scaled
profiles (equation (25)) displaying the expected scaling at low Pe. The value of xj.,q here corresponds to intersection with the gas
spinodal. Parameters: Pe = 0.02, pp ~ 5.1, 37! = 0.8, £; = 1000. (c) Parametric representation of the same profile

[o(x,t), m(x,t)] with x € [0,4;).

The travelling profiles (equation (5)) feature some interfaces whose widths diverge like Pe™'/2, see
appendix B; consistently, the equilibrium model (Pe = 0) entails a second-order phase transition for
B~!> B! For any fixed Pe > 0, one can still consider system sizes large enough that the travelling band is
dominated by bulk liquid and vapor phases. The two interfaces have different behaviors, referred to as the
leading and trailing edges, since the T.B. breaks left-right symmetry. For instance, figure 3 shows a band with
V > 0 so the leading edge is the rightmost interface, which generically behaves as

la(x) = Pg +Pe ﬁlead ((X - xlead) \/176) +0 (Pez) 5

25
m(x) = v/ Pefflicad ((x — Xlead ) \/ﬂ) +0 (Pea/z) , 29
where Xje,q is the position of the leading interface (set arbitrarily), and (fjead, #11eaq) are scaling functions of
order unity. Profiles with V < 0 are obtained by reflecting (p, 1), and a result analogous to equation (25)
holds for the trailing edge.
Remarkably, we can analyze the details of the functions (Jjead, #ead) Via @ mapping to a dynamical system
(see appendix B), where spatial profiles are described as heteroclinic trajectories between two fixed
points [66]. In particular, /71c,q features a singularity at the location x = x;ng where the density reaches the
value of the gas spinodal (flcad = ) (see green dot in figure 3), so that #1je,q = 0 for x > Xging, and #1e,q > 0
for x < Xging. Therefore, at the front of the leading edge (x > xing), there exists a region where, although the
density already differs from the gas [p(x) — p,] ~ Pe, the magnetization m(x > Xsng) ~ Pe*/? is much smaller
than at the back of the leading edge m(x < xqing) ~ Pe!/2, By contrast, at the trailing edge, the magnetization
is positive everywhere, thus smoothly connecting the interface to the bulk phase.

2.6. Summary of phenomenology and notation

We have described the model and its macroscopic behavior, with a focus on small Pe. In the next section, we
analyze its entropy production. To aid the reader, we give a brief summary here of the most important
quantities and notations that appear in the following.

The model behavior is determined by three dimensionless parameters which are the Peclet number Pe,
the strength of aligning interactions 3, and the average number of particles per site py = N/L. (Note that 8
may also be interpreted as a dimensionless inverse temperature; the notation T is consistently used to
indicate a time, and should not be confused with temperature.) The ratio of the system size L to the diffusive
length scale £; determines the dimensionless system size ¢, (equation (7)). We emphasize that the
hydrodynamic limit has N, L — oo with pg and /; both of order unity.

Travelling bands move with speed V; their density and magnetization profiles are denoted p, 71, which are
functions of the single variable x — Vit (equation (5)). They consist of liquid and gas regions with densities
p1, pg and magnetizations my, m,. We focus on large values of £, so that the bulk (liquid/gas) regions are large
compared to the widths of interfaces between them.

The microscopic model is based on an equilibrium-like energy H, with self-propulsion due to work by
external forces. The macroscopic description is based on a equilibrium free energy functional F with
associated free-energy density F (equations (14) and (15)), and driving forces proportional to Pe. There are
currents J,,, J,, and the local tumbling rate is K; overbars on these quantities indicate their most likely
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(hydrodynamic) values. These hydrodynamic currents and fluxes are related to free energy gradients and
driving forces via mobilities C, M (equations (12) and (13)). The action determines the probability of
pathwise fluctuations and is denoted by A (equations (19) and (20)).

3. EPR from particles to fields

We now turn to the EPR of the flocking model. As discussed in section 2.1, the microscopic model obeys
local detailed balance, with the assumption that self-propulsive forces are the only source of work. In steady
state, all such injected work is dissipated as heat, which determines the (mean) EPR.

For bacteria or synthetic colloids, this work would be derived from a source of chemical fuel; the actual
free-energy cost of self-propulsion is set by the difference in chemical potential between reactants and
products, see [31, 46] for explicit calculations. Equality between this free-energy cost and the work due to
self-propulsion requires that all the free energy available from the fuel is converted into useful work. In the
present context, this can be ensured by assuming that each (microscopically-reversible) chemical reaction
induces a directed (ie, non-diffusive) motion of the particle; this is called a tight coupling assumption [31].
The accuracy of this assumption is expected to depend on details of the specific system considered, including
for example the details of the particles’ self-propulsion mechanism [67]. We assume tight coupling for
convenience in the idealized system considered here, which allows quantitative computation of entropy
production in a thermodynamically-consistent framework.

A given trajectory w of the microscopic model is prescribed by the time series of particles’ hops and their
spin flips. The (time-averaged) rate of entropy production Sp;cr, for a trajectory w of duration T can then be
identified in terms the log-probability ratio of trajectory w and its time-reversed counterpart w® [21, 22]:

Smicro (W) = ;ln}%. (26)
From local detailed balance (and the tight-coupling assumption), this EPR can be identified with the
dissipated heat along the trajectory [21]

On the other hand, a trajectory X" at the hydrodynamic level (equation (18)) is given by realizations of
the relevant fields and currents. Its stochastic entropy production is defined by comparing X with its
time-reversed counterpart AR as
1. P(X)

Shydro (X) = ?ln P(XR)

. (27)

Since information about individual particle trajectories is lost on taking the hydrodynamic limit, there is no
guarantee that Spydro should coincide with Spicro @ priori [9, 10]. The former is sometimes referred to as the
IEPR to reflect that it is defined directly in terms of trajectory probabilities, and is not generically related to
dissipated heat or thermodynamic entropy. This IEPR is generally smaller than its microscopic

counterpart [34, 35]. However, we show below that the hydrodynamic IEPR and the microscopic EPR
actually coincide for this flocking model.

3.1. Quantifying EPR from microscopic lattice dynamics
From the microscopic definition of the particle model (equation (1)), the entropy production [21] associated
with a hop to the right by a particle of type o is
s(i—i+1 A
ASpp =In WU 2IED oA gnpy (28)
we(i+1—1i) LDy
Similarly, for particles changing their orientation, the entropy production is ASg;, = —3AH. In the absence
of self-propulsion (A =0), the total entropy production simply adds up to the energy difference:

SO () = 2 [H (wy) — H(wr)), (29)

micro T
where (wp,wr) are the configurations at the start and end points of trajectory w. For systems initialized in
their stationary state, the average of H is independent of time, so that Sr(lf}c:rg) is zero on average. For general
initial conditions, we still get SI(TEC:H? ) — 0 as T — oo, provided that H is bounded.
With self-propulsion (A # 0), the additional contribution in equation (28) leads to
A B

= DoLT [N+ (W) —N_ (w)] + T [H(wo) — H(WT)] , (30)

Smicro (W)
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where N, (w) = N® (w) — NL (w), in which N® (w) is the total number of right-hops by particles of type o,
and similarly Nt (w) is the number of left-hops. That is, N, (w) is the net displacement due to hops by
particles of type o. These displacements can be expressed in terms of the particle currents as

L2 fg T
N, (w) = ?2/0 dx/0 dt], (w;x, 1), (31)

where ], (w;x,t) is the current for particles of type o, evaluated for the trajectory w of the microscopic
model. (Equation (31) provides a link between microscopic and hydrodynamic representations, the
L/l;-dependence reflects that p is the number of particles per site, recall section 2.3.) Hence, using the
definitions of the Péclet number (equation (6)) and the flux J,, = J+ —J_ (equation (10)), we obtain

LPe
4T

£ T
Smico (&) = / dx / At (w6 + 2 [H () — H (o). (32)
0 0
We emphasize that this expression gives the rate at which entropy is produced at the particle level [21, 46].
Multiplying equation (32) by the temperature 3~ and the time T yields

Q=W+ AH, (33)

where Q = T3~ ' Sicro is the dissipated heat, W = Pe(L/{;) [ dxd#],, is the work done by the self-propulsion,
and AH is the change in energy. The relation in equation (33) is analogous to the first law of
thermodynamics: it reflects the conservation of energy between the system (namely, active particles), the
surrounding thermostat which absorbs heat, and some underlying reservoirs (for instance, chemostats)
which provide work to power self-propulsion.

3.2. Quantifying EPR from fluctuations of hydrodynamic fields

To evaluate the hydrodynamic EPR (equation (27)), one has to specify the parity under time reversal of the
observable fields when defining the reversed trajectory X% [9]. For consistency with the microscopic EPR, we
take particles identities to be invariant under time reversal. Accordingly, density (p) and magnetization ()
are even, and equation (10) enforces that the fluxes (J,, J,,,K) are odd:

={px,T—1t),m(x,T—1t),—Jpm(x,T—1t),—K(x,T— t)}xe[o,&],te[o,T] ) (34)

Note that a different time reversal can be chosen for other dynamics [9]. For instance, in flocking systems
where the positions of particles are enslaved to their orientations [11], namely without any noise terms, then
m is odd and, correspondingly, (J,,,K) are even. In fact, in previous studies of EPR in field theories of
flocking, particle orientations and hydrodynamic magnetization were treated as odd [40]. We emphasize
again that our approach here is to assume that work is done at the microscopic level by particles’
self-propulsive forces. This assumption fixes the dissipated heat and hence the associated microscopic EPR. It
means that particles’ orientations are even under the microscopic time-reversal operation w — w® in
equation (26), hence we make the same choice at the macroscopic level by taking 1 to be even in
equation (34). We show below that this also ensures the macroscopic IEPR matches this microscopic
dissipation, so the two levels of description are consistent, which would not be the case if m was taken as odd.
From the expression of the path action A (equation (20)), substituting X® (equation (34)) into the
definition of the hydrodynamic EPR (equation (27)) yields’

Shydro X E T/ dt/ dx L] ]pa ]m,P’ ) E]Upa]mapvm)

Hence using equations (21) and (23) (and that C is symmetric) we obtain

Shydro fT/ dt/ { |: ] Cc™ []p] +2Ka:;} (36)

7 The proper evaluation of entropy production using a field theory requires a careful definition of time discretization, say Ito or
Stratonovich [23]. However, the scaling of fluctuation magnitude with L~1/2 implies that this choice is not important here.
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It is convenient to define the hydrodynamic flux j and force f as [60]

Jp fo 7 7
j = ]m ’ f: fm ) with |:p:| = Z(C_l |:_P:| (37)
2K gz fo "

Then the EPR in equation (36) becomes

L T L
shydm(;c):ﬁ/o dt/o dx(j- ). (38)

We now derive a hydrodynamic counterpart of equation (32). It is useful to separate the force f into
equilibrium and active contributions, with

-0 OF 0
X a’%
f:feq +factivea feq: _axg? » ﬁictive: Pe| . (39)
OF
om 0

First, considering the contribution of f.q in the hydrodynamic EPR (equation (38)), we get

L (rort L " % (0F OF

o dt] dx ()= [ At dx( L8+ S0

KST/O t/o * (] fq) ESTA t~/0 * ( dp ot om tm) (40)
_ Fy—Fr
===

where Fr is the free energy functional (equation (14)) evaluated at time T, and similarly F is evaluated at
time 0. The first equality in equation (40) uses an integration by parts as well as the equation of motion
equation (10); the second is the chain rule. Physically, equation (40) illustrates that equilibrium forces
generate entropy equal to the free-energy difference. The active contribution to equation (38) is

L [roorb Lpe [T &
e dx (- active) — 7 dxJp. 41
&Todt/o G free) &T/Odt/o ] (41)

Hence, equation (38) becomes

T 2
Shydro (X) = 23;/0 dt/o dx/im + % [Fo — Fr]. (42)
Comparing equation (42) with equation (32), the first term matches exactly (it corresponds to rate of work
done by self-propulsion); the second term differs in that the energy H is replaced by the free energy F. Recall
that F = BH — S, is actually dimensionless, where Sy, refers to the system entropy which drives diffusive
spreading of the density.

In the following, we focus on the steady-state average (-) of EPR, for which the terms involving (H, F) in
equations (32) and (42) vanish. The relevant time-integrals are also stationary in this regime, yielding

LPe (%
<Shydr0> = <Smicr0> = 7/ dx]my (43)
s 0

with ], as in equation (12), evaluated in steady state. In particular, J,, is a function of x — Vi for T.B. states
(equation (5)), so that f dxJ,, is indeed independent of time. It is unusual that the microscopic EPR gets
preserved under coarse-graining of the dynamics [9]. A similar result has been established for a related lattice
gas model of active phase separation [18]. In our flocking model, the correspondence between microscopic
and hydrodynamic EPR essentially relies on (i) the proper scaling of the microscopic jump rates with system
size (figure 1), which allows for a controlled coarse-graining, and (ii) a thermodynamically consistent
definition of such rates, such that the same microscopic energy H constrains both particle hops and spin
flips. In fact, the outcome of (i) is that typical particle trajectories span the hydrodynamic system size on
hydrodynamic time scales, so that the coarse-grained hydrodynamic equations become exact at large system
sizes: it yields a correspondence between the path actions of the hydrodynamics and the underlying
microscopic process [60].

As a final comment for this section, we note that ], in (43) is of order unity in the hydrodynamic limit
L — o0. Hence (Shydro) o< L is diverging proportional to the number of particles N = p,L. This reflects that
each particle self-propels with finite (non-zero) velocity, and makes a contribution of order unity to (Shydro)-
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3.3. Spatial decomposition of EPR: where dissipation matters
The spatial integrand in the microscopic EPR (equation (32)), which stems from summing over the
microscopic hops (equation (28)), provides a natural decomposition of EPR. Using the correspondence
between microscopic and hydrodynamic EPR, we examine the spatial decomposition of EPR using the
hydrodynamic representation (equation (38)). In fact, such a decomposition of the hydrodynamic EPR
allows one to delineate where the contributions of the microscopic hops to EPR occur in space.

In what follows, we focus on the steady-state averaged EPR (Shydro), for which 7 fis the relevant local
decomposition. Here, the mean current 7 (equation (37)) is obtained by replacing (J,, /s, K) with their most
probable values (J,,J,»,K) (equation (12)), which explicitly depend on (p,m).

3.3.1. EPR across phase diagram: maximal dissipation in homogeneous states
The local decomposition of EPR 7 - f provides a route to anticipate how the spatially integrated EPR (Shydro)
behaves in various states of the system. To this end, we further decompose the current as

J = Jeq + Jactive; (44)
with
Jeq,p Pem 7 1_[9.2F
Jeq = Teqm , Jatie= |Pep |,  where {eq”’} =-5C L; 34 : (45)
2Msinh (‘g—f) 0 Jea,m *om
m

The currents (Jeq Jactive) are canonically conjugate [60, 68] to the forces ( feq7 factive) introduced in
equation (39). The local EPR then decomposes into three contributions

J f = Sbulk 1 Sinterface Tt Srev (46)
where
Sbulk = Jactive 'factive 5 Sinterface = jeq 'factive ) Srev = j'feq . (47)

From equation (40) one sees that (L//;) foésdxsreV is the rate of change of free energy, which vanishes in the
steady (travelling) state. However, even if its spatial integral vanishes, it can be locally non-zero; for instance,
Srey > 0 indicates that the local current 7 flows down the free energy gradient (parallel to f.q). Using
equations (39) and (45), the bulk EPR integrates to

L [% Lpe? [
*/ dx Spulk = — / dxp = NPe?, (48)
s Jo Lo o

where we also used fo& dx(p/s) = po = N/L which follows by conservation of mass and the definition of the
mean density po. Equation (48) shows that the integrated contribution of s, = Pe?p is non-zero. The
interfacial contribution sinterface Vanishes in homogeneous regions, since the first two components of the
equilibrium flux 7., (equation (45)) are proportional to gradients of (p,m).

The bulk and interfacial contributions add up to give the local rate of work:

Sbulk 1 Sinterface = Pejm; (49)

and yield the steady-state EPR when integrated over space:

L [%
<Shydro> = ? / dx (Sinterface + Sbulk) . (50)
sJ0

It follows that, for homogeneous states, the EPR is given by (Shyaro) = NPe?. We now demonstrate that NPe’
is an upper bound on the EPR for all steady states. First, observe from equations (39) and (45) that

jeq . ﬁlctive = Jactive * feq7 (51 )
yielding

Sinterface = Jactive 'feq = Srev — jeq 'feq- (52)
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Second, we deduce from equations (39) and (45) that

170,221 10,92 OF OF
. oF -
ot ] <] imm (57) o

where we have used that (M, C) are non-negative. Combining equations (52) and (53), and given that the
integrated contribution of s, vanishes, it follows that the integrated contribution of Siperface is always
negative:

/dxsinterface = /dx (_jeq 'feq) <0. (54)

Note however that sigerface 7 —Jeq - feq i general: these two quantities differ locally but have the same
integral. Finally, using equation (54) with equations (50) and (48), we obtain

0 < (Shydro) < NPe?, (55)

where the first equality is the second law of thermodynamics. In homogeneous states, the upper bound
becomes an equality; the lower bound is an equality in equilibrium.

In short, the system dissipates most in homogeneous states, and the emergence of T.B. reduces the
dissipation rate. Remarkably, the value of EPR in the homogeneous states coincides with the case of
non-interacting systems®: it is independent of whether the system is in the disordered state (m = 0) or in
collective motion (m % 0). This result is in stark contrast with other flocking models which entail a peak of
EPR at the transition between disorder and C.M. [8, 11, 12]. In fact, such a peak is present in those models
even in the absence of self-propulsion: it is not related to particles’ self-propulsion, but arises simply because
the diffusive and orientational dynamics are not thermodynamically consistent with each other. Even in the
absence of self-propulsion, those models do not obey detailed balance with respect to any Hamiltonian H,
contrary to our flocking model.

3.3.2. Modulation of EPR at leading and trailing edges
From equations (39) and (45), we write the reversible EPR as

- - ,0F - 8}" OF oOF
rev — 2K x)m| N 'x) m m . 56

s 2K+ 0. ]am+8 I [Ip +7, } (56)

In the T.B. state, equation (10) holds with (K, J,,J,) equal to their barred values, so the chain rule gives

oOF oOF OF
Srev = _E |:]p +]m :| . (57)
For a travelling profile (equation (5)), we have 0.F /0t = —VO,F, yielding
- 0F - OF

Srev*ax [Vf]papjmarn] . (58)

Since equation (58) is a total derivative, we deduce fo&dxsreV = 0 as expected. Locally, s, has contributions
from leading and trailing edges of the travelling band. The total contribution from the leading edge can be
obtained by integrating across it to obtain

geatine = L [T
liq
as 59
L {Vf 7 6fr (59)
fs ) liq

where we used that (OF /Om) = 0 in the bulk of either phase’. We also continue to assume V > 0, the
opposite case is analogous. For bulk phases one also has J, = mPe, the gas has m = 0, and using equation (11)
we obtain

L OF
Sr "8 = 2V [Rys — Rig], @ (p,m) = F (p,m) — < > (60)
Es 8/) lig

8 A typical particle produces Pe?kp of entropy during its orientational relaxation time. To see this, use equation (8) and that the entropy
production is measured in units of kg.
9 In the bulk, one has 8,J,, = 0, from which equation (10) implies K = 0, hence (0F/Om) =0.
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Figure 4. Analysis of reversible EPR density sy for Pe = 1. The positions of interfaces are indicated by dashed lines, shown at the

same positions in all panels. (a) The density profile. (b) The reversible EPR density sy (equation (58)) displays peaks, localized at

interfaces. (c) The potential & (equation (60)). The areas corresponding to the two peaks in (b) are equal and opposite. From
equations (59) and (60) one has jiﬁ;’sdxsrev = V(®gas — Piiq) which relates these areas to the difference in ® between the states.

Other parameters: py = 5.25, 37! = 0.8, £; = 300.

. . .. traili leadi
Since sy integrates to zero, one has trivially that Syey ¢ = —Srey ¢

The behavior of s,y and ® is shown in figure 4. This model has ®j;; < ®gy5, SO Srey is positive at the
leading edge and negative at the trailing edge. Recalling the definition s,ey = 7- foq (equation (47)), the
leading edge (srey > 0) has the current 7 in the same direction as the thermodynamic force f.q, which points
down the gradient of F. At the trailing edge, one has the opposite effect: the current points up the gradient of
F, which increases (locally) the free energy and reduces dissipation.

The definition of ¢ (equation (60)) resembles (minus) the equilibrium thermodynamic pressure
—F + p(0F/9p). Note that replacing F — F — cp in the free-energy definition (equation (15)) does not
affect the dynamics, since [ dxp is a conserved quantity. Hence, physical quantities cannot be ruled by local
free-energy differences (e.g. Fiiq — Fgas) Which depend on c. The structure of (60) ensures that ® is
independent of ¢; the similarity with the pressure reflects that both quantities obey this same constraint.

We now turn to the interfacial contribution Sipterface = Jeq * factive = Jactive * feq (€quation (47)) to the local
EPR. Figure 5 shows that siyterface Dehaves similarly to syey: it is positive at the leading edge and negative at the
trailing edge. However, we recall that the contributions of the two interfaces do not cancel in this case, so that
f dXSinterface < 0 (equation (54)). From equations (52) and (53), we obtain Sipterface < Srev> and we also find
numerically that spyx + Sinterface = 0 at every location in space. Note also that replacing F by ® in
equation (39) leaves the thermodynamic force fq invariant, so one may equivalently think of these forces as
gradients of F or ®.

Similar to syey, we find Sipeerface > 0 at the leading edge, because the current J,ciive is parallel to 74 there,
and Sipterface < 0 at the trailing edge where the current is anti-parallel to Jq. In this way, activity leads to a
cycle where free energy is constantly being fed into the system at the trailing edge and released at the leading
edge; see discussion in section 3.4 below. Another way to understand the excess dissipation at the leading
interface is that the liquid phase is invading the vapor, and the liquid has the lower value of the relevant
free-energy ®. Hence the direction of interfacial motion is consistent with the equilibrium forces, while the
opposite is true at the trailing edge.

For repulsive active particles, which undergo a phase separation between dilute and dense regions, a
reduction of EPR at interfaces has been reported [31], consistently with results for field theories of scalar
active matter [28]. In contrast with the travelling bands of aligning active particles, interfaces of repulsive
active particles do not move at constant speed. Therefore, active forces (namely, self-propulsion) of repulsive
particles point towards dense regions, whereas passive forces (namely, steric repulsion) point towards dilute
regions. Then, the active current (proportional to the local polarization) is in the direction opposite to the
thermodynamic force, so the local correction to the bulk EPR always is always negative.

3.4. Thermodynamic cycles in density-magnetization space

We now return to the total (spatially-integrated) EPR (Spyaro) of the T.B. state. Recall from equation (55) that
this is generally less than its value in homogeneous states. To understand the size of this reduction, we
substitute the expression of the thermodynamic flux (equation (45)) and force (equation (39)) into
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Figure 5. (a)—(c) Interfacial EPR density Sinerface (Orange line, equation (52)) displays opposite peaks that are localized at
interfaces of the density profile (black line). It has a behavior similar qualitative to the reversible EPR density sy (equation (58))

shown in panels (d)—(f) by purple lines. Here Pe = 1 and #; = 300, the values of 3 are indicated, the mean densities are
po = (5.25,3.28,2.62) in (a), (b), (c) respectively.

equation (52), to obtain

£ £
/ dxSinterface = 7Pe/ dx (Paxa}— + m@xaf>
0 0 om 8p

£
:pe/ ax( o0+ om).
0 om dp

(61)

where the second line used integration by parts. In the T.B. state, the integral in equation (61) depends on the
shape of the travelling band. Now substitute in the travelling profile equation (5) and cast the EPR
(equation (61)) as a closed loop integration:

£
/ dxX Sinterface = Pe% I:a}—dp + &de:| ) (62)
0 oy [ Om dp

where the integral is performed in the (p,m) plane clockwise along the closed curve 0¥ defined
parametrically by the band profiles [p(x), m(x)] with x € [0, £;) (figure 6). Applying Green’s theorem, we
write equation (62) as an integral over the surface ¥ enclosed within the closed curve 0%; noting also from
equations (48) and (50) that (Spydro) = NPe? + (L/¢y) J: oésdxsimerface we obtain

_ Npe? 4 LPe // >F_OPF
(Shydro) = NPe” + ‘. dpdm { = a7 ) (63)
P

where we have used the convention of clockwise integration in equation (62).

The integral in equation (63) depends on the asymmetry of the two interfaces. For example, if the
travelling profile were left-right symmetric then the loop 9% would consist of two overlapping branches, so
that the enclosed surface ¥ would vanish. In the language of section 3.3.2, this corresponds to a situation
where the extra free energy dissipated at the leading edge matches the free energy stored at the trailing edge,
leading to a kind of reversible cycle that repeats as the band travels many times around the periodic
boundaries. Such a balance of work input/output is present for s, but not generally for sinterface-

The asymmetry of the travelling profile is shown in figure 6, together with the cyclic (parametric)
representation based on equation (63). Consistent with this, the bound (Shyqro) < NPe? (equation (55)) is
not saturated in practice, which also shows that the energy exchanges are not symmetric at the
leading/trailing edge. The representation in equation (63) provides a route to evaluating EPR for an arbitrary
profile. In particular, it sets the stage for some perturbative approaches based on asymptotically determining
the corresponding cycle in (p,m) space, which we discuss next.
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Figure 6. (a) Travelling band profile with the leading and trailing interfaces shown in solid and dashed lines, respectively.

(b) Parametric representation of the same profile as a loop in the (p,m) plane. Dots mark the binodal bulk phase values. The
asymmetry of the two interfaces leads to a finite surface enclosed within the loop. The color map indicates the magnitude of the
integrand defining the interfacial contribution to EPR (equation (63)). Parameters: py = 2.625, Pe = 1,371 = 0.72, £, = 300.

3.5. Scalings of EPR close to equilibrium

3.5.1. Interfacial EPR

We now analyze the interfacial contribution at small Pe. Recall from equation (24) that the differences of
density and magnetization between the dense and dilute phases scale as Pe and Pe'/? respectively. It follows
that the size of the density-magnetization loop 3, which defines the interfacial EPR (equation (63)), shrinks
to zero as Pe decreases. In fact, 3 approaches a limiting shape, for which

// dpdm ~ pe’/?, (64)
b

As a representative point inside this loop, we take (p,m) = (¢,,0), where ¢, = 3/ (B — 1) is the density on
the gas spinodal, defined so that 0,,,, F = 0 and 0,,F = 1/, (equations (B.1) and (B.2)). Since the loop X
is small and F is smooth, we deduce that the integrand of the interfacial EPR contribution (equation (63))
reads

O*F O*F _p-1 12
57 o~ +(’)(Pe ) (65)

everywhere in X.. The correction is given by the maximal linear extent of X. Hence, using equations (63)
and (64), the interfacial contribution to the total EPR is given by

" Pe 5/2
dx Sinterface ~ — dpdm ~ Pe’/ . (66)
0 Peg JIx

which can be compared with the bulk contribution’s scaling ~ Pe?. Numerical results in figure 7(a) confirm
the scaling (66).

To explore this behavior in more detail, figure 7(b) shows how the local interfacial EPR depends on
position, close to the leading edge of the travelling band. The EPR is localized at the interface recall figure 5
and the discussion of section 3.3.2. Figure 7(c) shows the parametric representation of the density profile for
two values of Pe. Results in appendix B show that the small-Pe behavior of this plot can be obtained from the
phase portrait of a dynamical system (figure B2). In particular, the green dot in figure 7(c) indicates the point
(p,m) = (g,,0) where the boundary of the limiting shape is singular, because it follows the line m =0
between this point and (p,, 0). Interestingly, the scaled local interfacial EPR sipterface/ Pe’ vanishes in this part
of the interface. Physically, this region with m ~ 0 and p; < p < g also has Jeq,,» = 0 (equation (45)) and
hence sjpgerface = 0 also (equation (47)). In this region, the positive velocity of the band appears because the
equilibrium force drives a (diffusive) density current to the right, down the density gradient. Elsewhere in the
leading edge, the active forces are finite, and sustain the travelling band.

3.5.2. EPR contributions from individual particle types
The scaling in equation (24) has another unexpected outcome on the interfacial EPR that we briefly describe.

It follows from considering the separate contribution to the EPR from each particle type:

_ — _ _ —
Sbulk = Spylk + Shulk? Sinterface = Sinterface + Sinterface (67)
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Figure 7. The interfacial EPR for small Pe. (a) Same as in figure 2(c) with additional data from the interfacial EPR (equation (61))
evaluated from numerical solutions for the travelling profiles. The straight green line has the slope —5/2 in agreement with
analytical predictions (equation (66)). (b) Same as in figure 3 (Pe = 0.02) with additional data for the interfacial EPR density
(equation (61)) which is restricted to the back section of the leading interface where the density is above the gaseous spinodal

p > @q. (c) Parametric plots of travelling wave profiles in the (p,m) plane for two values of Pe, as indicated. These give the EPR
via equation (63), whose integrand depends weakly on (p,m) throughout this range (note the scale of the color map). Hence the
EPR is proportional to the size of the enclosed region 3.

with currents and forces for + particles defined as

1
+ == + — _
Sbulk = ]activefitiw Sinterface — 5 (Jeq.p £ ]e%m)ﬁitive’ (68)
where ji::tive =Pe(m=+p)/2 andf‘f{tive = +Pe (equations (39) and (45)).

As we have seen, in both the H. and C.M. phases, the only contribution to the EPR is coming from the
bulk piece (equation (48)) where the contribution per particle is constant and equal for both particle types:

5b+ Ik _ Sbulk 2
ouwx — bulk Pe s (69)
P+ pP—

where p+ = (p £ m)/2 are the + and — particle number density fields. However, in the T.B. phase, where an
extra interfacial contribution is picked up, this apparent symmetry is in general broken with different
contributions form the two particle types. The interfacial contribution from the two types is given by

Simterface = TPEP+ 8x§:i, (70)
and correspondingly
oF _oF oF o
dpr Op Om
Then, equation (24) implies that
Ewmeel/z , 8%7::(’)(1), (72)

om

so the two species feel equal free-energy gradients 0.F /0p™ ~ OF /0p~. Then, equation (70) yields

s$terface Si;terface 3
= +0(Pe). (73)
P+ pP—

Therefore, the interfacial EPR per particle is equal and opposite for the two species. The individual terms are
O(Pe/?), as in equation (66).

4. Discussion

We have studied the EPR measuring the energy dissipation in a flocking lattice model where self-propulsion
is the only source of external work. Analytical progress is possible here thanks to the diffusive scaling of the
microscopic rates which enables exact coarse-graining. This leads to equality between the IEPR at
hydrodynamic scales and the microscopic dissipation.

Despite these idealized modeling assumptions, we expect many qualitative characteristics of the EPR
found here to be generic in other themodynamically consistent models of active matter. Indeed, although our
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findings are formulated in terms of coarse-grained fields, they are corroborated by microscopic arguments
that do not rely on the diffusive scaling of the rates. In particular, our methods for analyzing EPR could be
deployed in other models of active matter, such as non-reciprocal Ising models [69-72] and pulsating active
particles [73], provided that these models satisfy the condition of local detailed balance at the basis of
thermodynamic consistency.

We also note that restriction to one dimension simplifies our analysis in two ways: particles’ orientations
have only two possible values, and the density can only vary as a function of one co-ordinate. It is possible to
derive fluctuating hydrodynamic descriptions for higher dimensional models too (see [47, 74] for examples
of suitable hydrodynamic limits, which can be generalized to the fluctuating level). For the (simpler) case of
particles with two distinct orientations in a d-dimensional system (as in the AIM [42]), one may expect
similar behavior to that found in this work, but it is not guaranteed that the density can be described as a
function of just one co-ordinate, offering the possibilities for new instabilities and different types of pattern
formation [42]. For continuous orientations (similar to the Vicsek model [38]), the situation is likely to be
richer still [75]. In any case, a clear understanding of the 1d case is valuable as a baseline for more
complicated behavior in higher dimensions.

As to the experimental relevance of EPR, we explained in section 3 that the link between experimental
dissipation and the model’s EPR relies on a tight-coupling assumption between fuel consumption and work
by propulsive forces. The accuracy of such assumptions and the feasibility of experimental measurements
remains to be determined. On the other hand, the IEPR could be computed using data from microscopy or
from other measurements of particle fluxes (currents), and comparing observed probability distributions
with their time-reversed counterparts. In the present context, this requires that particles’ orientations can be
resolved, in order to infer both J,, and J,,; this might be possible in (for example) catalytic colloids.

4.1. Comparison with other models
Let us summarize our findings in comparison to previous models of flocking, where dissipation exhibits a
distinct behavior due to a different source of irreversibility.

In discrete flocking models, like the AIM [42, 44] and its recent extensions [43, 47], the dynamics of
positions is decoupled from the Hamiltonian controlling the dynamics of orientations. This decoupling can
also be regarded as a temperature mismatch between the two thermal baths that are in contact with the
position and orientation degrees of freedom [41, 42]. This situation creates another source of irreversibility
in addition to the one associated with self propulsion. In particular, dissipation remains finite at vanishing
self propulsion [12, 42]. In continuous symmetry flocks, like the Vicsek model [38, 39] and its variants [8,
11], there is a similar thermodynamic inconsistency between the two types of degrees of freedom. Even if the
alignment dynamics are described by a Hamiltonian and respect detailed balance [8, 11], the positional
updates of the particles do not feel this Hamiltonian, so the model is not thermodynamically consistent, see
also [76].

This extra source of irreversibility brings qualitative differences in the nature of dissipation compared to
our findings here. First, since dissipation here is directly linked to particle’s persistent motion, and since the
latter is unchanged between the homogeneous disordered and homogeneous flocked states, then so is the
dissipation. This is captured by our explicit expression for bulk dissipation (equation (48)). This is contrary
to the findings in previous models that reported on a cusped dissipation peak at the flocking transition [8,
11, 12]. The latter originates from spontaneous alignment with a corresponding singular change in the rate at
which the thermodynamic mismatch between orientation and translation dissipates energy. It does not
represent a change in the energetic cost of propelling particles, and in particular the cusped peak was shown
to survive in the zero self propulsion limit [12].

4.2. Spatial decomposition of EPR
Our second finding concerns the spatial decomposition of EPR, showing a strong spatial modulation of EPR
at phase boundaries within the travelling band state. A similar behavior was recently reported for continuous
flocks using a deep learning approach [29]. Within our analytically tractable field theory, we link these
modulations to particles being driven either up or down free energy gradients. Particles entering the
travelling band from the leading edge gain free energy, while those that leave the trailing edge lose it. The
overall effect of these processes is to reduce the EPR with respect to the value attained in homogeneous states.
We propose a cyclic description in the (p,m) plane to rationalize this effect. Moreover, our analysis at small
Pe reveals a singular scaling of dissipation, and provides further insights into the mechanism sustaining the
phase-separated travelling bands.

We expect spatial modulations of the local EPR to be generic in thermodynamically consistent flocking
systems, since spatial modulations in the free energy generically modulate the rate of particles displacement
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in such models. It would be interesting to examine how our analysis extends to other phase behaviors
featuring both reversed and counter-propagating bands [41].
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Appendix A. Stochastic hydrodynamics

The microscopic dynamics described in section 2 consists of biased diffusive hops along with reaction
dynamics. Fluctuating hydrodynamics of this type of dynamics was derived in [48], and has been
implemented in other active lattice gas models [18, 47, 58, 59]. To derive the flux noise terms, we start with
the microscopic rates of a particle to hop from site 7 to its neighboring sites i & 1. As was shown in [41], the
corresponding probability jump rates can be written for both particle types as

rate(i i+t 1)=Dy+ O (L7). (A.1)

Crucially, the leading order terms are symmetric hops with fixed rate Dy, which guarantees that the measure
is controlled by the simple symmetric hop rules corresponding to noninteracting random walkers [48]. At
the hydrodynamic level, one can then write down the corresponding fluctuations of the fluxes

J+ = Up£Tm) /2 as [57]

J+ (x,1) = J4 (x,1) = \/%Uia (A.2)

where ] refers to average values (equation (12)), and (1 ,7_) are some uncorrelated Gaussian white noises
with zero mean and correlations given by

(e (x,0)nx (x',1")) = 2p46 (x —x") 0 (1 — 1), (A.3)

in terms of the coarse-grained units of space and time (section 2.3). The corresponding form of the diffusive
Lagrangian £; (equation (21)) directly follows.

To account for fluctuations in the tumbling rate we follow the large-deviation formalism for reactive
lattice gases [48, 59, 77]. We consider a mesoscopic interval of space [x,x + Ax] and time [t, t + A#], for which
the density p4 (x,t) can be regarded as locally constant. The corresponding number of + particles within this
interval reads p* LAx/{; ~ L° > 1, each of them tumbling with probability ™ At during At , where

= eﬁ o (A4)

is the probability tumble rate on macroscopic time units [41]. The total number of tumbling events of 4 into

— obeys a Poisson distribution: K, ~ Pois(LAxAtp™rT /{;). Then, the tumbling rate density K, = Li;ﬁ -

follows a large deviation principle given by

L
— IHP(K+> ~ ZAxAtl/Jerﬁ (KJ,_), (AS)
with
Y, (Kyp) =Ky 1 K N kot (A.6)
ptrt +) = K4 10g p+1’+ + pr. .
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Similarly, the corresponding tumble rate density of the opposite tumbling reaction (— — +), denoted by K_,
follows the large deviation principle given by

| =

—InP(K_) ~ —AxAti),- - (K_), (A7)

o~

S

with
_ _IgtLH
B (A.8)

Lastly, following the contraction principle [78], the distribution of the tumbling difference K = K, — K_ is
described by the large deviation function

—InP(K) ~ €£AxAt£K (K), (A9)

where L is found by minimizing the combined probability cost of the previous two processes under the
constraint of tumbling rate difference:

L= inf [ty (K2)+ 0 (Ky = K)] (A.10)

which, after some algebra, can be shown to coincide with the expression in equation (22), where the mean
tumbling K and the mobility M read

K=rtpt—rp= , M=2\/rtptrp. (A.11)
After some algebra, these can be shown to coincide with the expressions in equations (12) and (13). Lastly,
summing up the contribution from all the mesoscopic compartments, we arrive at the action in
equation (20) given in terms of the tumbling Lagrangian in equation (A.10).

Appendix B. Travelling bands close to equilibrium
In this appendix, we derive some analytical results regarding the behavior at small Pe (close to equilibrium).

B.1. Coexistence between polar bands and apolar background
We derive the scalings for the binodal gaps, magnetization, and velocity of travelling bands (T.B.) as given
equation (24). The solid red and blue lines in figure 1(b) are the binodals, and the region between these lines
marks the miscibility gap, within which one observes macroscopically inhomogeneous (T.B.) states. The
dashed lines are the spinodals which mark the limits of stability of the ordered and disordered homogeneous
phases, as derived in [41]. We show in this section that the difference of the spinodals is O(Pe), and
figure 1(c) confirms that the same scaling holds for the binodals at sufficiently small Pe.

We describe the spinodal lines by temperature-dependent densities: () and ¢4(3). From [41], the
spinodal ¢, of the disordered gas phase (dashed blue lines in figures 1(b) and 2(b)) is given by 5g(ye) =1
with g given by equation (4), so

B
¢g(ﬁ)—ﬁ- (B.1)

This spinodal instability is the onset of spontaneous magnetization [41], so that for p = ¢,(/3), we obtain
OpmF =0, OppF =1/¢q. (B.2)

The spinodal ¢; of the ordered liquid phase (dashed red lines in figures 1(b) and 2(b)) is given implicitly by
the relation

Pe? DomF \*
Det [Hess (F)] | (p=gpm=m) = M (o) l(ap ]__> - 11 , (B.3)
’ o (p=swp1,m=my)

with Det [Hess (F)] the Hessian determinant of F (p,m), the mobility M given in equation (13), and the bulk
magnetization of the liquid m; = myg(ipy, B) is defined by

tanh 'z

mo (p, B) = pz(p,B), = pg(p), (B.4)

z
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where the second equality defines the dependence of z on p and f.
To establish the small Pe scaling for the liquid spinodal we define € = ¢; () — ¢4 (3) which by (B.1) is
equivalent to

=g ke (B3)

The two spinodals both approach the critical line as Pe — 0 so € is small in this limit. Evaluating (B.4) at
p = ¢y and using this fact, one finds that z is also small, leading to an expression for the magnetization at
leading order in e,

Plugging (B.5) and (B.6) into (B.3), and keeping only leading order terms in ¢, we finally arrive at '’
B

2(8—1)y/48—267 -3

which, when plugged into (B.6) also implies m; = O(Pe'/?). Combined with the expression of the band
velocity (equation (11)), we have thus fully established the scaling laws in equation (24).

Q1(B) ~ @5 (B) +Pe (B.7)

B.2. Scaling of the T.B. profile
In this section, we establish the singularity for the profile of the travelling band at low Pe as described in
section 2.5. It is associated with a transition in the scaling for m along the leading interface: in the back
section of this interface m scales like Pe'/?, whereas m in the leading section scales like Pe’/2. To examine
such a transition, we derive a set of ordinary differential equations (ODEs) that describe the interfacial
profile, and expand these ODEs at low Pe.

The T.B. profile is found by plugging p = p(x — V¥) and m = m(x — Vt) into equations (10)—(12) which
results in the coupled second order ODEs:

- oo [2]) ] fapatanin):

with primes denoting derivatives with respect to the argument. Since the p dynamics is conservative, the first
row of (B.8) can be integrated once:

(00ppF + m0pF) p' + (pOpmF + MOy F ) ' + Vp— Pein = C. (B.9)
The integration constant C can be evaluated in either of the bulk phases to yield
C=Vp, = Vp, —Pemy. (B.10)

Then, using the scalings in equation (24), we deduce

V= pe—"" :(’)(Pel/z). (B.11)
PL— Pg

which sets the scaling of the velocity of the travelling band.
The partial derivatives of the free energy (equation (15)) can be computed explicitly. Plugging these and
the value of C (equation (B.10)) into equation (B.9), we arrive at

m? m
<1+5f_)3) ﬁ'—%ﬁl’:V(pg—ﬁ)—i—Peﬁi. (B.12)

From the scalings of the miscibility gap (equation (24)) and the band velocity (equation (B.11)), we deduce
that the right-hand side of equation (B.12) vanishes in the bulk phases, and is O(Pe*/?) in the interfacial
regions. To ensure that leading order contribution from the left-hand side of equation (B.12) is also

O(pe’ / %), we consider the scaled coordinate, relative to the interfacial position Xinerface:

X= (x - xinterface) vV Pe. (B-13)

10 The quantity under the square root in (B.7) is positive for any temperature above the tricritical temperature, 37! > ﬁ;l =3-+6.
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Figure B1. Validation of the scaling for miscibility gap (equation (B.13)) and interfacial width (equation (24)) for the travelling
band interfaces at low Pe. The plots show an overlay of the travelling bands for seven values of Pe = (0.01,0.009,

0.008,...,0.004), decreasing from top to bottom. Here Xy, and xjeaq are the locations where the corresponding magnetization
profile reaches half of its height.

Since the density and magnetization differences between the phases are also vanishing at small Pe, we expand
them about the gas spinodal (p = g, m = 0) which yields

p(X) = @+ Peqy (%) + O (Pe?)
i (x) = Pe'2m, (%) + O (Pe3/2) ) (B.14)
V="Pe2V, + 0O (Pe3/2) .

A numerical verification of this scaling at the interfaces is shown in figure B1, this also implies (25) for the

vicinity of the leading edge. Note that p, — ¢, = O(Pe) 50 pieaq differs from the corresponding piece of g; by
an additive constant.

B.3. Singular form of TB profile

We now explain the singular behavior of #7e,g that was discussed in section 2.5. Substituting (B.14) into the
equation for m (equation (B.8)), we arrive at two ODEs:

. 283 < mf)
m =— m -1,
! V1 T 33

- Y 2/62 2 “l%
di=Vile—aq)+m eivy 1<q1 38)°

where the dots indicate derivatives with respect to the scaled position X (equation (B.13)), this notation is
used here to connect with the dynamical systems picture coming up next. The constants

(B.15)

- VP
c=Pe ey, _TIVEE (B.16)
Pe PL— Pyg

are fixed by equation (24) to have values of order unity. We assume in the following that the liquid has
positive magnetization, leading to V; > 0. The other case can be dealt with similarly. In general, ¢ < 0 since
the binodal density of the gas is lower than the corresponding spinodal.

The coupled ODEs in equation (B.15) can be interpreted as a dynamical system in the phase space
(q1,m1) (figure B2(a)): the time variable in the dynamical system is the (scaled) position co-ordinate for the
travelling profile. The two independent parameters V; and ¢ encode the locations of fixed points in the
dynamical system, and set the topology of the phase portrait. The ODEs in equation (B.15) have three fixed
points, two of them are saddles that correspond to the bulk phases of the travelling bands:

[q,g;’mﬂ = [Ca O]v
[dhom] = |e+38/ (2V2) +ey/[1 438/ eV -1, \/wq’l} :

(B.17)

and the third fixed point is a stable spiral (figure B2).
Within this picture, one would expect interfaces between the phases to correspond to heteroclinic orbits
that connect these two fixed points [66]. However, equation (B.15) can support at most one heteroclinic
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Figure B2. (a) Phase portrait for (g1, ;) under the dynamics of equation (B.15). (b) Similar phase portrait using

equation (B.18). Black and red solid lines are the q; = 0 and ri1; = 0 nullclines, respectively: they intersect at the two fixed points
marked by the red and blue dots (equation (B.17)) corresponding to the gaseous and liquid phases, respectively. The third fixed
point marked by the purple dot is a stable spiral, and the orange solid lines denote heteroclines. Trajectories initiating above the
heterocline in (a) always end up in the spiral, whereas trajectories initiating above the upper heterocline in (b) evade the spiral.
The values of c >~ —2.75 and V; ~ 0.43 were extracted from the numerical solutions of the hydrodynamics in

equations (10)—(12) at Pe = 0.004 using the relations in equations (B.11) and (B.16).

trajectory, which goes from the gaseous fixed point (q5,m5) to the liquid one (g}, ). This corresponds to
the trailing interface. The entire portion of phase space above this heterocline belongs to the basin of
attraction of the stable spiral. Indeed, for any choice V; and c, there are no orbits that start from the liquid
fixed point (g}, m!}) and asymptotically approach the gaseous fixed point (g5, #5) (figure B2(a)). This means
that the leading interface of the travelling profile is not captured by equation (B.15).

To resolve this issue, we consider the next order term in the equation for #;: this contribution has a
non-perturbative effect on the phase flow. In the region of the portrait with very small m;, it is necessary to
account for terms in equation (B.15) at O(Pe*/?): one finds 71, = Pe(c — q;) + O(m;) in this region. The
effect of this term may be accounted for by a composite equation

, 2 m?
= — o m (%1) +Pe(c—aq),

PV, 38

¢ 25 i (B.18)
. -V _ AP 2 M )
= Vilemq)+m o, (m 35)

which is valid for small Pe: the term proportional to Pe is the singular perturbation. Interpreting these
equations as a dynamical system, the phase portrait is shown in figure B2(b). There is now a second
heterocline connecting the liquid and vapor fixed points. This effect can be traced back to a change in
topology of the nullclines, which is the non-perturbative effect at small Pe. Figure B2(b) shows that the basin
of attraction of the stable spiral is now contained between the two heteroclines.

Physically, the upper heterocline in figure B2(b) corresponds to the leading edge of the travelling band.
Setting Pe = 0 in equation (B.18) yields (B.15) and this line disappears. We must instead take Pe — 0, in
which case the limiting heterocline passes through the origin [(q;,m;) = (0,0)] which corresponds to
(p,m) = (gq,0): this is a point on the gaseous spinodal. The segment of the heterocline with g; < 0 connects
the origin to the fixed point (q,0) which corresponds to a point (g, ) = (pg,0) on the gaseous binodal.
This is exactly the scenario found in simulations of the hydrodynamics (figure 3) where the leading edge of
the interface has a segment with m = 0, between the spinodal and binodal densities.
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