
            

PAPER • OPEN ACCESS

Thermodynamically consistent flocking: from
discontinuous to continuous transitions
To cite this article: Tal Agranov et al 2024 New J. Phys. 26 063006

 

View the article online for updates and enhancements.

You may also like
Effects of adaptive acceleration response
of birds on collective behaviors
Narina Jung, Byung Mook Weon and
Pilwon Kim

-

Initial-state dependence of phase
behaviors in a dense active system
Lu Chen,  , Bokai Zhang et al.

-

Time-asymptotic interaction of flocking
particles and an incompressible viscous
fluid
Hyeong-Ohk Bae, Young-Pil Choi, Seung-
Yeal Ha et al.

-

This content was downloaded from IP address 85.10.106.65 on 08/06/2024 at 09:27

https://doi.org/10.1088/1367-2630/ad4dd6
https://iopscience.iop.org/article/10.1088/2632-072X/ac5b14
https://iopscience.iop.org/article/10.1088/2632-072X/ac5b14
https://iopscience.iop.org/article/10.1088/1674-1056/acca09
https://iopscience.iop.org/article/10.1088/1674-1056/acca09
https://iopscience.iop.org/article/10.1088/0951-7715/25/4/1155
https://iopscience.iop.org/article/10.1088/0951-7715/25/4/1155
https://iopscience.iop.org/article/10.1088/0951-7715/25/4/1155


New J. Phys. 26 (2024) 063006 https://doi.org/10.1088/1367-2630/ad4dd6

OPEN ACCESS

RECEIVED

18 January 2024

REVISED

13 May 2024

ACCEPTED FOR PUBLICATION

20 May 2024

PUBLISHED

5 June 2024

Original Content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the title
of the work, journal
citation and DOI.

PAPER

Thermodynamically consistent flocking: from discontinuous to
continuous transitions

Tal Agranov1,∗, Robert L Jack1,2, Michael E Cates1 and Étienne Fodor3
1 DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
2 Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
3 Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg, Luxembourg
∗ Author to whom any correspondence should be addressed.

E-mail: tal.agranov@mail.huji.ac.il

Keywords: flocking, active matter, stochastic thermodynamics, lattice gases, fluctuating hydrodynamics

Abstract
We introduce a family of lattice-gas models of flocking, whose thermodynamically consistent
dynamics admits a proper equilibrium limit at vanishing self-propulsion. These models are
amenable to an exact coarse-graining which allows us to study their hydrodynamic behavior
analytically. We show that the equilibrium limit here belongs to the universality class of Model C,
and that it generically exhibits tricritical behavior. Self-propulsion has a non-perturbative effect on
the phase diagram, yielding novel phase behaviors depending on the type of aligning interactions.
For aligning interaction that increase monotonically with the density, the tricritical point diverges
to infinite density reproducing the standard scenario of a discontinuous flocking transition
accompanied by traveling bands. In contrast, for models where the aligning interaction is
non-monotonic in density, the system can exhibit either (the nonequilibrium counterpart of) an
azeotropic point, associated with a continuous flocking transition, or a state with
counterpropagating bands.

1. Introduction

Flocking is a prominent phenomenon in nonequilibrium statistical mechanics [1, 2], comprising the
collective motion of a large group of aligning self-propelled agents. It appears in systems ranging from bird
flocks [3] to human crowds [4] and synthetic self-propelled colloids [5]. Various theoretical models lead to a
qualitatively similar flocking behavior, which suggests possible universality. A pioneering theoretical account
of flocking is due to Vicsek et al [6], who proposed an agent-based model almost three decades ago, followed
by Toner and Tu [7] who offered a hydrodynamic description. Since then, these models and their variants
have played a leading role in the study of active matter [8].

In the Vicsek model, locally aligning spins move with fixed speed and individually fluctuating
orientation, which drives the dynamics out of equilibrium. Strikingly, under local alignment, this model
undergoes an ordering transition even in two dimensions, which would be precluded in equilibrium by the
Mermin–Wagner theorem [9, 10]. When increasing either density or alignment, the system transitions from
a homogeneous disordered gas to a state of homogeneous collective motion with long-ranged order.
Originally thought of as a continuous transition [6], it took almost another decade to establish flocking as a
discontinuous transition [11]: in between the two homogeneous phases, there is a region in parameter space
where dense ordered bands propagate against a dilute disordered background. Unlike equilibrium liquid-gas
transitions, the critical point is at infinite density. This feature has been attributed to the fact that the dense
and dilute phases have different symmetries, so that they cannot be connected via a continuous
transformation [12].

A recent lattice-based model, known as the active Ising model (AIM), has led to a series of analytical
predictions for the phase diagram of the flocking transition [13, 14]. In this simple extension of the Ising
model, motile spins with discrete symmetry can only self-propel along a single axis. Importantly, this model
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is amenable to coarse-graining, yielding an exact hydrodynamic description [12, 15, 16]. Although the
phenomenology of AIM is clearly distinct from any equilibrium analogue, it is tempting to try and
rationalize how AIM departs from an equilibrium reference model, with proper reversible dynamics, as was
done for repulsive active particles [17, 18]. Interestingly, AIM does not reduce to equilibrium at vanishing
self-propulsion, as one might expect. This inconsistency reveals that AIM is actually not compatible with the
theory of stochastic thermodynamics [19], which assumes that the system is in contact with equilibrium
reservoirs and driven by external forces (so that it naturally relaxes to equilibrium in the absence of drive).
The same holds for other flocking models with continuous spin symmetry [6], or with topological
interactions that involve nonreciprocal alignment [20, 21], which also lead to irreversibility even at vanishing
self-propulsion.

It is then natural to examine flocking models where the microscopic dynamics is amended to entail an
equilibrium limit in the absence of self-propulsion, which we refer to as thermodynamic consistency. Several
questions remain open: Would novel qualitative behavior emerge from thermodynamic consistency? To
which universality class does the equilibrium limit of such flocking models belong? Inspired by AIM, we
explore these issues in the context of flocking systems with a discrete symmetry. To make analytical progress,
we choose lattice models which, like AIM, admit an analytically exact and tractable hydrodynamic
description.

This work is part of a broader current effort in recasting various active systems in a thermodynamically
consistent framework such as in phase field crystal models [22], active fluids [23, 24] , and reaction-diffusion
systems [25]. Although our models are permanently out of thermodynamic equilibrium, we find that their
behavior can be usefully analyzed in terms of the underlying free energy that controls their equilibrium limit
at vanishing self-propulsion. Indeed, the free energy plays an informative role even outside the regime of
linear response to the nonequilibrium drive. As noted previously [12, 13, 26], the standard scenario of a
discontinuous flocking transition stems from a density modulated coupling of the alignment interaction. In
our models, we reveal a strikingly different phenomenology between the cases of monotonic and
non-monotonic density modulations. For models where ordering increases monotonically with density, the
equilibrium limit exhibits a single tricritical point [16], and introducing activity is a non-perturbative effect:
the tricritical point diverges to infinite density, and the flocking transition is discontinuous all across phase
space. In contrast, for models where ordering is non-monotonic with density, the equilibrium limit exhibits a
pair of tricritical points. At finite self-propulsion, such points can either collide into a single azeotropic point,
yielding a continuous flocking transition, or instead a new collective state emerges with counterpropagating
bands.

This paper is organized as follows. In section 2, we set up the general definition of our
thermodynamically consistent flocking models. We propose a microscopic dynamics with a generic type of
aligning interactions, and derive the corresponding hydrodynamic description through systematic
coarse-graining. Then, we examine in sections 3 and 4 the phase diagrams for monotonic and
non-monotonic dependence of the aligning strength on density, respectively. Overall, our results illustrate
how various choices of density-dependent alignment affect the flocking transition, yielding unprecedented
phenomenology in the flocking context. Yet, some of this phenomenology echoes that of equilibrium
systems, so that our thermodynamically consistent description allows one to anticipate and classify the
topologies of nonequilibrium phase diagrams in terms of their equilibrium counterparts.

2. Thermodynamic consistency: frommicroscopics to hydrodynamics

In this section, we introduce a class of lattice dynamics for active spins that obey thermodynamic consistency.
We take locally aligning interactions with mesoscopic range to capture a transition to collective motion. Such
a form of interactions is amenable to exact coarse-graining, which allows us to derive the corresponding
hydrodynamic equations for some relevant fields. Importantly, our derivation is given in a functional form
with an arbitrary dependence of the alignment strength on density.

2.1. Microscopic dynamics of aligning active spins
Flocks with discrete symmetry, like in AIM [12], are defined by two species of particles (+ and−) which hop
with a bias to the right or left (respectively) on a periodic lattice of L≫ 1 sites, see figure 1. We consider for
simplicity a one dimensional lattice, yet our fluctuating hydrodynamics is trivially extended to higher
dimensions. The dynamics does not exclude multiple occupancy, so that each site i can have any number of
particles. The total number of particles in the system is N= ρ0L, where ρ0 is the mean density.

The dynamical update rules consist of diffusive hops biased by self-propulsion, and spin flips+↔−.
Differently from previous models [12, 16], at zero self-propulsion we make both these rules derive from the
same Hamiltonian H via a detailed balance constraint [19, 27]. We leave H unspecified at this stage.
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Figure 1. The active flocking model with thermodynamic consistency. Each particle can be in either one of two states (+ and−)
which determine the direction of biased diffusion (respectively to the right and left). The aligning Hamiltonian H constrains both
the change of particle states and their diffusive hops.

Self-propulsion is then added as a weak bias of hops in the direction of the particle’s spin, yielding the
following update rules (see figure 1):

(i) Site hoping: Any particle jumps to a neighboring site with rate D0e
− β∆H

2 + λ
D0L if the jump is in the

direction of its spin, and D0e−
β∆H

2 otherwise. Here,∆H is the energy difference between the
configurations of the system before and after the jump.

(ii) Tumbling: A+ (−) particle converts into a− (+) particle with rate (γ/L2)e−
β∆H

2 .

Here, D0 is the bare diffusion constant, λ is the self-propulsion strength, and γ sets the tumble rate. The
scaling of the rates with L ensures that in the hydrodynamic limit (L→∞ at fixed ρ0) all processes occur on
diffusive time scales [15, 28]. Indeed, the time it takes for particles to traverse a macroscopic system of size L,
either via diffusive motion or on account of self-propulsion, scales as L2 which is also the time scale for
tumbling events. This L-dependent scaling of the rates is standard for other lattice-based diffusive
models [15, 28]. The main difference with AIM [12, 13, 26] is that our site hopping now accounts for the
energy difference∆H. This feature renders our models reversible at vanishing self-propulsion, thus setting a
proper equilibrium limit, as a consequence of thermodynamic consistency [19, 27].

We now restrict H such that the interaction range spans a mesoscopic scale∆x= Lδ , with 0< δ < 1.
This scale is sub-extensive in system size, yet contains a large number of particles 1≪∆x≪ L, and is the
scale appearing in the coarse-graining procedure detailed below. Within this choice of scaling each particle
interacts with a vanishing fraction of the system of the order of∼∆x/L≪ 1, yet it still enables a phase
transition in one dimension even in the equilibrium limit. Indeed, in defiance of the usual Landau argument
(which states that having only a finite energetic cost of domain walls in one dimension destroys long range
order [29]) let us consider the free energy cost of the interface between phases. The configurational entropy
of a single domain wall scale as logL (as there are L sites to center it upon them). Now since each particle
across the domain wall interacts with about∼∆x other particles, then the energtic cost of a domain wall
would scale at least as∆x∼ Lδ , which is much larger then the entropic logL contribution (compare this with
a local interaction range where the energetic cost isO (1)). Thus, the largeO

(
Lδ
)
free energy cost will make

domain walls thermodynamically unfavorable and keep the ordered state stable.
Note that it was recently found [30] that the flocking transition does not survive in the one-dimensional

AIM. Instead it is replaced by either direction-reversing ordered aggregates or static asters composed of
opposing clusters of left and right movers that block each other. These arise by virtue of the purely local
interaction range of the AIM and do not appear in our model as a result of our choice of a mesoscopic
interaction range.

In practice, interactions are given in terms of some local average occupancies for the density and
‘magnetization’ variables, respectively ηρi = η+i + η−i and ηmi = η+i − η−i , where η

+
i and η−i are the number

of+ and− particles at site i. The local averages around site i are given by

ρ̂i =

∑
|i−j|<∆x η

ρ
j

2∆x
, m̂i =

∑
|i−j|<∆x η

m
j

2∆x
. (1)

We then choose the aligning Hamiltonian to take the form

H=−
L∑

i=1

m̂2
i

2ρ̂i
f(ρ̂i) . (2)

3
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For f(ρ̂i) = 1, this is the sum of L fully connected Ising Hamiltonians within some restricted range∆x, where
the coupling is scaled with the total number of interacting spins, see also [12]. Indeed, denote by
ski ∈ {+1,−1} with k= 1, . . . ,ηρi the spin variable of the k’th particle on site i. Then the Ising Hamiltonian
with all-to-all interactions within the range∆x of site i reads

−1

2

∑
|i−j|<∆x

∑
|i−k|<∆x

∑ηj

l=1

∑ηk

m=1 s
l
js
m
k

2∆xρ̂i
=−2∆x

m̂2
i

2ρ̂i
. (3)

The factor 1/2 avoids double counting. The normalization 2∆xρ̂i ensures the interactions remain extensive
with the total number of interacting spins, as is common for the fully-connected Ising Hamiltonian. Then
summing the right hand side (3) over all disjoint compartments of size 2∆x is equivalent to the sum (2) with
f(ρ̂i) = 1 which runs over all lattice points (up to sub-leading corrections in L). Then the density-dependent
modulation f(ρ̂i), which plays a key role in the following, tunes the alignment strength. For AIM, a similar
modulation appears at a coarse-grained level, as an effective renormalization due to the hydrodynamic
fluctuations [26]. In our model, since the microscopic dynamics already contains a mesoscale interaction
range, we choose to directly introduce such a modulation at this level. Various forms of f can be motivated
on account of different types of close neighbor interactions [31–34].

In the following, we consider the hydrodynamic limit of this model. As a preliminary step, note that for a
single isolated particle, there are two important length scales: ξp = λL/γ is the average displacement of

particles between tumbles due to self-propulsion, and ξd = L
√
D0/γ is the typical diffusive displacement,

over the same time. These distances are measured in units of the lattice spacing and they are bothO(L),
because of the L-dependent hopping rates of the model.

2.2. Hydrodynamic equations for density andmagnetization
We follow a standard coarse-graining procedure, inspired by similar lattice models with diffusive
scaling [35], which has already been deployed in some active lattice gas models [36, 37]. We start with a
spatial coarse-graining over the diffusive displacement ξd. I.e., we define the macroscopic spatial coordinate
x= i/ξd ∈ [0, ℓs] where ℓs = L/ξd =

√
γ/D0 is the system size in the hydrodynamic representation (measured

in units of ξd, as in [15]). The reason for this choice is that we will later analyse phase-separated profiles: their
interfacial widths are of order 1 in this hydrodynamic representation and it will be convenient to take ℓs ≫ 1
so that the system is large compared to this interfacial width. For consistency with these choices we make a
diffusive scaling of time, setting t= γ t̂/L2 with t̂ the time variable of the microscopic system.

The local density in the vicinity of point x is defined by the mesoscopic coarse-graining (1) as:

ρ(x, t) = ρ̂ xL
ℓs
(t) , m(x, t) = m̂ xL

ℓs
(t) . (4)

Since ρ is conserved andm is not, the dynamics of these fields must take the general form[
∂tρ
∂tm

]
=−∂x

[
Jρ
Jm

]
−
[
0
2K

]
(5)

where Jρ, Jm are the conservative fluxes and K is the net rate of change of the ρ− density due to spin flipping.
As detailed in appendix A, to leading order in system size we find the following expressions[

Jρ
Jm

]
=−1

2
C(ρ,m)∂x

[ δF
δρ
δF
δm

]
+Pe

[
m
ρ

]
, K=M(ρ,m) sinh

(
δF

δm

)
, Pe=

λ√
D0γ

. (6)

The Péclet number Pe= ξp/ξd is the standard measure of activity in similar active systems with diffusive

scaling [38]. Here, F[ρ,m] = L
ℓs

´ ℓs
0 dxF [ρ(x, t),m(x, t)] is the free-energy functional of the equilibrium

(λ= 0) system with the corresponding free energy density given by the function

F (ρ,m) =
ρ

2
ln

ρ2 −m2

4
+

m

2
ln

ρ+m

ρ−m
− ρ−β

m2

2ρ
f(ρ) , (7)

while C andM are mobility coefficients given by

C= 2

[
ρ m
m ρ

]
, M=

√
ρ2 −m2. (8)

The expressions (6) and (7) are exact as long as Pe ̸= 0. Yet in order to describe correctly the equilibrium
(Pe= 0) hydrodynamics for non convex F , one has to retain surface tension terms that are sub-leading

4
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O
(
L−2|∇ρ|2,L−2|∇m|2

)
. Still, as is usual in the thermodynamics of phase separation, the bulk term F

suffices for determining the binodal (coexisting) densities 4.
The dynamics (5) and (6) has a thermodynamically consistent structure. Indeed, for Pe= 0, all terms

derive from the free energy F , which then serves as a Lyapunov function, as discussed in appendix A. As
shown in what follows, this equilibrium limit belongs to the universality class of Model C [16, 39]. Note that,
as written, the dynamics (5) and (6) neglects some sub-leading noise terms of order L−1/2; these can be
readily deduced from the detailed-balance condition (and are included by definition in Model C).

The general structure of (5) and (6) should hold rather broadly for all thermodynamically consistent
flocking models with discrete symmetry and under diffusive scaling, including models with purely local
interaction range (albeit with a renormalized free energy depending on dimensionality). The conservative
fluxes in (6) are linear in the free-energy derivatives, as is common when expanding close to equilibrium.
That these expressions hold also far away from equilibrium is a consequence of the L-dependent scaling of
the microscopic rates, and the diffusive scaling of space and time; any higher order spatial gradients will be
sub-leading in system size L−1. This reasoning does not apply for the flipping term K, since it does not involve
spatial variations of the fields. Indeed, this term goes beyond linear order in the free energy derivatives even
at the hydrodynamic level [40]. Activity (Pe> 0) leads to the extra terms Pem and Peρ in the conservative
fluxes (6) but otherwise does not interfere with the remaining bare equilibrium terms. Again, this is a
consequence of the diffusive scaling, where self-propulsion enters as a weak bias in the microscopic dynamics.

Our thermodynamically consistent dynamics in (5) and (6) is easily related to the non-consistent one of
AIM [12, 13, 26]. Our flipping term K is the same as in the hydrodynamic equations of AIM, under
appropriate matching of f. The conservative fluxes Jρ and Jm are different from those of AIM, since they stem
from a different choice of hopping rules. Nevertheless, one can reproduce the corresponding terms in AIM by
sending the temperature that enters these terms to infinity (namely, taking β= 0 in the free energy that enters
the conservative fluxes Jρ and Jm), as discussed in appendix A. Indeed, denote by F0 the free energy density
evaluated at β= 0 and write F0 for the corresponding free energy functional. Then the hydrodynamics of the
AIM are also given by (5) and (6), except that one replaces F→ F0 in the expressions for J[

Jρ
Jm

]
AIM

=−D0∂x

[
ρ
m

]
+Pe

[
m
ρ

]
=−1

2
C(ρ,m)∂x

[ δF0
δρ
δF0
δm

]
+Pe

[
m
ρ

]
, (9)

while retaining the full F in K. To this extent, the source of residual irreversibly in the zero self-propulsion
limit of AIM can be regarded as amismatch between two temperatures controlling respectively the
conservative fluxes (Jρ, Jm) and the flipping term K.

3. Phase diagram for monotonic alignment strength

Various forms of the density-dependent alignment strength f(ρ), entering in the microscopic alignment (2)
and in the hydrodynamic free energy (7), can be motivated to reflect different types of close neighbor
interactions [31–34]. We first explore the phase behavior for a monotonic f(ρ) by considering the form
appearing previously in AIM [12, 13, 26]:

f(ρ) = 1− r

ρ
. (10)

This choice is convenient mathematically, although on physical grounds one might instead favor choices that
are positive everywhere, and do not diverge at ρ→ 0. Yet this does not change the phenomenology reported
below. Other monotonic forms have been recently proposed in extensions of AIM yielding a similar phase
behavior [16]. In some of these models, the alignment term is not purely quadratic in the magnetization as
assumed here (see (2)). Yet, its expansion close to criticality reduces to this form, and the topology of the
phase diagram actually follows from the behavior close to criticality.

The resulting phase diagram, given in terms of T= 1/β and ρ0, is composed of three phases shown in
figure 2: (i) a homogeneous disordered phase (H;m= 0), (ii) a homogeneous ordered phase (H;m ̸= 0),
which becomes a collective motion (C.M.) for non-vanishing self-propulsion, and (iii) a phase-separated
state (P.S.) between different discrete symmetries (m= 0 andm ̸= 0), which becomes a traveling band (T.B.)
for non-vanishing self-propulsion. In this section, we study the topology of this phase diagram and derive its
phase boundaries. We address first the equilibrium limit (Pe= 0), and then the nonequilibrium regime
(Pe> 0).

4 The profiles presented in the following correspond to finite Pe ̸= 0 and were computed without the need for the sub-leading interfacial
tension terms.
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Figure 2. Phase diagrams for (a) the equilibrium case (Pe= 0) and (b) the nonequilibrium regime (Pe= 0.5), with monotonic f
given by (10) with r= 1. The colored dashed and solid curves are spinodals and binodals, respectively. The black solid curve is a
critical line. The black dot marks a tricritical point. (c) Traveling band (T.B.) profiles for Pe= 0.5, ρ0 ≃ 3.62, and T≃ 0.71.

3.1. The equilibrium limit (Pe= 0): Model C dynamics
As pointed out in [16], the equilibrium, zero-propulsion limit of thermodynamically consistent flocks with
discrete symmetry must generically lie within the universality class of Model C [39]. In our model, this
should remain true for any non-trivial choice of f(ρ), while allowing different global phase behaviors even at
equilibrium. Model C describes an equilibrium dynamics which couples a conserved and a non-conserved
scalar order parameter, and the canonical Landau form close to criticality is given by [41, 42]

Fcri =
a

2
(δρ)

2
+

b

4
(δρ)

4
+

c

2
m2 +

d

4
m4 + em2δρ, (11)

where higher order terms and terms purely linear in the density are omitted. Expanding our free energy
in (7) around a homogeneous neutral state (ρ= ρ0,m= 0), one can derive the expressions of the different
coefficients in (11), which are determined by the choice of f(ρ) 5. Importantly, the coupling coefficient e
in (11) reads

e= βf ′ (ρ0) , (12)

which vanishes for a constant f(ρ); in this special case, our model falls outside the Model C universality class.
(As discussed in section 4, this also makes the nonequilibrium Pe> 0 regime different from the usual
flocking scenario.) As detailed in [42], the topology of the phase diagram is set by the values of the
coefficients in (11). As we have the exact form of the free energy at our disposal (7), we follow the procedure
presented in [42] to map the phase diagram across the whole phase space, even beyond criticality.

We find the stable phases by minimizing the free energy (7) under the constraint of conserved density

(1/ℓs)
´ ℓs
0 ρdx= ρ0. These belong to one of three possibilities: the homogeneous neutral state

(ρ= ρ0,m= 0) (marked in figure 2 by H.m= 0), the homogeneous magnetized state (ρ= ρ0,m=m0 ̸= 0)
(marked by H.m ̸= 0) or a phase separated state (P.S.) with spatially varying magnetization and density. In all
of the stable states, since magnetization is not conserved, its value is locked to the local value of the density
via the minimization of F with respect to the magnetization. A non-trivial minimizerm0 ̸= 0 then emerges at
∂mmF|m=0 = 0 which defines the curve

Tc = f(ρ) . (13)

Generally, the relation (13) only establishes linear instability of the neutral state (m= 0). In regions that also
admit phase separation, as discussed below, this curve will then mark a spinodal instability which we will
term themagnetization spinodal, see dashed blue curve in figure 2(a). Only in the absence of phase
separation, this curve marks a second-order transition between disordered and ordered states, see solid black
curve in figure 2(a). In the ordered phase, the valuem0 (ρ,T) is found from ∂mF = 0, which gives the
magnetization in an implicit form:

m0 = ρz(ρ,T) ,
arctanhz

z
= βf(ρ) , (14)

5 The expansion also produces constant terms, a linear term δρ, and a cubic term δρ3. The linear term integrates to zero due to mass
conservation. The cubic term in general does not, yet it shall not affect the phase diagram, see [41].

6
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Figure 3. Equilibrium (Pe= 0) bifurcation diagrams for (a) T> Ttri and (b) T< Ttri, with monotonic f given by (10) with r= 1.
Curves mark the different branches of solutions for the magnetization of homogeneous states(14). Dashed blue and red lines
mark instabilities of the two branches. Both originate at the density value ρc given by the curve (13). The instability of the
magnetized branch (dashed red) terminates at the density value given by the density spinodal (15). The region of densities
enclosed between these two values is linearly unstable for both branches. Red and blue dots mark the binodal densities of the
phase-separated state (P.S.), which is the globally stable state for any mean density between these points (including densities for
which all homogeneous states are unstable). The black dot marks a critical point.

where the second equality defines the dependence of z on ρ and T. A state with magnetization (14)
minimizes the free energy only for homogeneous profiles. To find phase separation, one has to follow the
usual procedure of a common-tangent construction over the single-variable function F [ρ,m0 (ρ,T)] [42].
Non-convexity of this function marks linear instability against spatial density variations, and is equivalent to
non-convexity of the two-variable free energy F :

|Hess(F)|< 0, (15)

where |Hess(F)| is the Hessian determinant of F (ρ,m). An explicit expression for (15) is presented in
appendix B.

The relation (15) defines a spinodal curve that is complementary to the magnetization spinodal (13), see
dashed red line figure 2(a), which we will term the density spinodal (since instability here also involves
density modulations). The two spinodal curves meet at a tricritical point, as detailed in appendix B, whose
location obeys for the density ρtri

[
ρtri

f ′ (ρtri)

f(ρtri)

]2
=

2

3
. (16)

The region enclosed between the two spinodals (13) and (15) defines the region of spinodal decomposition.
This is shown by the bifurcation diagram figure 3 which marks instabilities along a constant temperature
cross section of figure 2(a). At T> Ttri (figure 3(a)) the neutral branchm= 0 loses stability at the density
given by (13) while the entire branch of magnetized statesm0 ̸= 0, prescribed by the nontrivial solution
to (14), is stable. In contrast, at T< Ttri (figure 3(b)), the magnetized branch has an unstable segment which
terminates at the spinodal density (15). Thus, any homogeneous state with density within the region
enclosed between the two spinodals (13) and (15) is linearly unstable.

Any monotonic f(ρ) that vanishes at a finite density while saturating at infinity will have at least one root
of (16), yielding a phase diagram like that in figure 2(a). At T> Tc (ρtri), the curve (13) marks a line of
critical points separating the homogeneous disordered (m= 0) and ordered (m ̸= 0) phases. At T< Tc (ρtri)
the transition to the ordered phase becomes discontinuous with a region of coexistence between an ordered
liquid and a disordered gas. Within the miscibility gap, the relation (13) marks the magnetization spinodal,
and the complementary density spinodal given by (15) lies within the symmetry-broken phase. The location
of the binodal curves follows from a common tangent construction, as detailed in appendix B. Note that,
although coexisting bulk phases are found within this procedure, properly resolving the interfaces would
necessitate retaining sub-leading gradient terms, which quantify surface tension in the free energy. Note also
that Model C can exhibit additional phase diagram topologies, such as critical points and double critical end
points [42], under appropriate tuning of f(ρ). These are absent for the curves (10), but could arise for other
sufficiently elaborate choices, including strictly monotonic curves.

7
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3.2. The nonequilibrium regime (Pe> 0): Discontinuous flocking transition
The phase diagram for the monotonic f(ρ) obeying (10) at finite Pe= 0.5 is shown in figure 2(b). The
tricritical point shifts to infinite density, turning the second-order transition line into a first order
coexistence region (miscibility gap) along its entire length. The same phase behavior is observed for AIM and
its recent variants [13, 16]. Within the miscibility gap, the phase separated state becomes a traveling band
(T.B.), as shown in figure 2(c). Indeed, at non-vanishing self-propulsion, any magnetized bulk phase attains a
non-vanishing density flux given by Pem, according to (6). Then, simple flux balance across the interface
implies that it must propagate with velocity given by

V= Pe
∆m

∆ρ
, (17)

where∆ρ and∆m are the density and magnetization difference between phases. Moreover, we have found
numerically that the propagation velocity is bounded below as |V|⩾ Pe, for all models that we have
examined.

In the absence of a free energy minimization principle, there is no simple recipe to establish the binodals
in the nonequilibrium case. Throughout this paper, the nonequilibrium phase diagrams were found by
numerically integrating the hydrodynamics (5) and (6) using a finite difference scheme for space and time.
Then binodals are identified as the plateaus of the traveling density profiles as shown in figure 2(c). For more
details see appendix D.

To establish more broadly the generic topology of the phase diagram in figure 2(b), we analyze the linear
instability of the dynamics. First, the magnetization spinodal line (13) remains unchanged even at finite
Pe> 0, since it describes instabilities against homogeneous variations. As the active terms in the dynamics (5)
and (6) only couple to spatial flux derivatives, they do not affect this instability. In contrast, the
complementary density spinodal (15) is changed. As we show in appendix C the instability in (15) is now
modified into the following criterion

|Hess(F)|< Pe2

2M(ρ0,m)ρ0

[(
∂ρmF
∂mmF

)2

− 1

]
, (18)

where the mobilityM is given in (8), and the magnetizationm is to be evaluated atm=m0(ρ,T) in (14).
Based on other flocking models, it was argued that the flocking transition should generically be

discontinuous everywhere [2]. In our model, this holds true if the conditions in (13) and (18) predict a finite
spinodal gap at any Pe> 0. It is useful to notice that, at the magnetized statem=m0(ρ,T) in (14), we get
∂ρmF/∂mmF =−∂m0/∂ρ, so that the density spinodal (18) becomes

|Hess(F)|< Pe2

2M(ρ0,m)ρ0

[(
∂m0

∂ρ

)2

− 1

]
. (19)

Moreover, close to the magnetization spinodal (13), we havem0 ∼
√
Tc (ρ)−T with Tc = f(ρ), yielding

∂m0

∂ρ

∣∣∣∣
ρ0

∼ T ′
c (ρ0)√

Tc (ρ0)−T
. (20)

Given that (20) diverges close to the magnetization spinodal (13), a finite neighborhood of the
magnetization spinodal remains unstable at arbitrary small Pe no matter where one is on the phase diagram.
Therefore, the non-perturbative effect of activity on the phase diagram can be attributed to the singularity of
the order disorder transition of the equilibrium limit, as encoded inm0. Remarkably, however, this argument
fails for any non-monotonic f(ρ) at its maximum f ′(ρ0) = 0. As discussed next in section 4, the case of
non-monotonic f actually leads to novel phase behaviors and a diagram very different from figure 2(b).

4. Phase diagram for non-monotonic alignment strength

Non-monotonic alignment strength functions f(ρ) are likely to arise physically in systems where alignment is
restricted by visual obstruction, as was recently proposed to model natural bird flocking [43].
Non-monotonicity opens the door to novel phase behaviors, not encountered for the monotonic case in
section 3 above. In equilibrium (Pe= 0), when f(ρ) features a single maximum, one typically finds two roots
for (16) marking a pair of tricritical points. This scenario leads to two distinct miscibility gaps, as shown in
figure 4(a). The miscibility gap to the left of the maximum has a disordered low-density phase coexisting

8
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Figure 4. Phase diagrams for (a) the equilibrium case (Pe= 0) and (b) the nonequilibrium regime (Pe= 1), with non-monotonic
f given by (21) with α= 1/20. The colored dashed and solid curves are spinodals and binodals, respectively. The black solid curve
is a critical line. The black dots mark tricritical points. The black dashed line marks the maximal magnetization curve (24). An
‘azeotropic point’ emerges in the nonequilibrium regime. (c) Reversed band (R.B.) profiles for Pe= 1, ρ0 ≃ 15.62, and T≃ 0.43.

with an ordered higher-density phase. The miscibility gap to the right of the maximum has a disordered
high-density phase coexisting with an ordered lower-density phase.

In the rest of this section, we consider how self-propulsion (Pe> 0) affects this equilibrium picture. The
regime of non-monotonic f is more elaborate compared with the monotonic case in section 3. In particular,
we distinguish two qualitatively different phase behaviors, depending on the curvature of f(ρ) close to its
maximum. For illustration purposes, we use particular examples in a specific family of non
monotonic-curves:

f(ρ) =

(
1− 1

ρ

)
e−αρ, (21)

with α> 0. In what follows, we show that the topology of the phase diagram is controlled by local properties
of f close to the maximum, so that the exponential cutoff at large densities is immaterial for our purposes.

4.1. Azeotropic point in the nonequilibrium case (Pe> 0)
For mildly curved functions f(ρ), we find numerically that the tricritical points collide at the maximum of f
at any finite Pe, see figure 4(b). As for the case of monotonic f(ρ) in section 3, the effect of self-propulsion on
the phase diagram is non-perturbative: the equilibrium critical line expands almost everywhere into a finite
miscibility gap, except at a single point which remains critical. Thus, in contrast with the case of monotonic
f(ρ), there does remain a critical point on the phase diagram at finite Pe. Therefore, a non-monotonic f(ρ)
can allow for a continuous transition from homogeneous disorder (H.,m= 0) to collective motion (C.M.).

For equilibrium systems showing a phase-diagram topology equivalent to figure 4(b), the critical point is
called an azeotropic point [44], so that we also adopt the same term here. This point marks the pairwise
meeting of two branches of first order lines, with miscibility gaps that display distinct behavior. The left gap
features the usual traveling bands (T.B.) as in figure 2(c). The right gap features reversed bands (R.B.), shown
in figure 4(c). These bands propagate in the direction opposite to the bulk magnetization. Indeed, in the
corresponding miscibility gap, the coexistence is between a magnetized lower-density phase and a
paramagnetic high-density phase. Then, according to the flux balance condition (17), it follows that the
phase boundaries propagate in the reverse direction from usual.

Our scenario shows that the flocking transition need not necessarily be discontinuous, at variance with a
widely held view among those studying flocking [2], although it remains an exceptional case. In order to rule
out some continuous transition scenarios, note that the disordered (H.,m= 0) and the ordered phases (H.,
m ̸= 0 at Pe= 0 or C.M. at Pe ̸= 0) entail different symmetries. Thus, it is not possible to pass between these
pure phases without crossing a (symmetry-breaking) phase transition of some kind. This argument
precludes the standard scenario of liquid-liquid phase separation, where a single pair of binodals terminate at
a critical point. Indeed, one sees from the equilibrium phase diagrams in figures 2(a) and 4(a) that the
binodals terminate at tricritical points, and any path between the pure phases must cross a phase transition
line. In the nonequilibrium phase diagrams of figures 2(b) and 4(b), one observes discontinuous transitions
as well as an azeotropic point, all of which are consistent with the relevant symmetry principles.

9
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Figure 5. Phase diagrams for (a) the equilibrium case (Pe= 0) and (b) the nonequilibrium regime (Pe= 1), with non-monotonic
f given by (21) with α= 1/2. The colored dashed and solid curves are spinodals and binodals, respectively. The black solid curve
is a critical line. The black dots mark tricritical points. The black dashed line marks the maximal magnetization curve (24). A C.B.
phase emerges in the nonequilibrium regime. (c) The counterpropagating bands profiles for Pe= 1, ρ0 ≃ 1.8, and T≃ 0.17.

4.2. Counterpropagating bands in the nonequilibrium case (Pe> 0)
When f(ρ) is sufficiently curved, two tricritical points in the equilibrium limit are closer to the maximum of
f(ρ), see figure 5(a). Here, we observe a different behavior at finite Pe compared with section 4.1. Instead of
the azeotropic point reported in figure 4(b), there now appears a region with counterpropagating bands
(C.B.), as shown in figure 5(b). This happens when the two magnetised binodals (red solid lines) merge, at a
finite temperature TC.B.. For temperatures between TC.B. and Tmax =max [f(ρ)] , the system enters the C.B.
phase (see figure 5(c)), a strongly fluctuating dynamical steady state whose properties can be understood in
terms of the partial restoration of a broken symmetry, as we discuss next.

Recall that within the symmetry-broken T.B. and R.B. phases, the steady state consists of a single
magnetized band, which travels through the system. The magnetization may be either positive or negative:
this spontaneous breaking of spin-reversal symmetry is familiar from the Ising model. In turn, this symmetry
breaking drives a particle current, which causes the band to move either left or right. This additionally breaks
the spatial reflection symmetry of the model. Due to the periodic boundary conditions of the system, the
resulting steady state is also time-periodic, with period ℓs/V.

In the C.B. phase, both left- and right-moving bands are present at the same time, as shown in figure 6.
Since they propagate in opposite directions, the two bands regularly meet each other. It turns out that they
interact weakly (we recall that the number of particles on each site is unbounded, in contrast with exclusion
processes). The resulting situation is most simply represented in terms of the density of+ and− particles

ρ± (x, t) =
ρ(x, t)±m(x, t)

2
. (22)

As shown in figures 7(a) and (b), the space-time dependence of these profiles is well-approximated by
ρ+ ≃ ρ̄(x−Vt) and ρ− ≃ ρ̄(−x−Vt). In this case, the density ρ(x, t) is still time-periodic, with behaviour
invariant under spatial reflection, so that it is analogous to a standing-wave solution, while the T.B. and R.B.
are analogous to travelling-wave solutions. These analogues of standing waves and travelling waves are
strongly anharmonic, as expected since the governing equations are non-linear. In fact, ρ̄ is close to a top-hat
profile, as it was in the T.B./R.B. phases: there are extended bulk regions at densities (ρ1,ρ2), separated by
interfaces whose widths areO (1)≪ ℓs. Plotting the density profile at generic times, as shown in figure 6, one
typically finds up to four distinct regions whose densities are the following. Outside of either band the
density is that of the dilute binodal ρg = 2ρ1. Inside both bands, the density is that of the dense binodal
ρl = 2ρ2. Finally, inside one band and outside the other, the density is that of the intermediate binodal
ρi = ρ1 + ρ2. Hence the intermediate binodal is always halfway between the extreme binodals, while their
difference equals twice the magnetizationm0:

ρg (T) = ρi (T)−m0 (T) , ρl (T) = ρi (T)+m0 (T) . (23)

An important consequence of (23) is that the propagation velocity (17) attains its limiting minimal value
|V|= Pe. The magnetization in (23) marks the bulk magnetization of the intermediate binodal
m0 =m0 (ρi,T), as given explicitly by (14). Therefore, both binodals ρg,l in (23) are fully determined by the
value of the intermediate binodal ρi. In practice, we find empirically that the binodal ρi coincides with the
maximal magnetization curve ρmax, defined by ∂ρm0(ρmax,T) = 0, as shown in dashed black line in
figure 5(b). We get an implicit representation of ρmax(T) by differentiating (14) with respect to ρ, yielding

10



New J. Phys. 26 (2024) 063006 T Agranov et al

Figure 6. Time evolution of the counterpropagating bands for Pe= 1, ρ0 ≃ 1.8, and T≃ 0.17. (Top) The counterpropagating
bands of the ρ± fields, in cyan and magenta, barely scatter upon encounter. (Middle) The corresponding density ρ= ρ+ + ρ−
and magnetizationm= ρ+ − ρ− display an oscillating dynamical state with volume fraction periodically varying in time.
(Bottom) the corresponding space time plot for the density profile.

z

(1− z2)arctanhz
= 1− ρmaxf ′ (ρmax)

f(ρmax)
, T=

z

arctanhz
f(ρmax) . (24)

Overall, equations (23) and (24) specify all three binodals of the C.B. phase in closed analytic form.
We now address the phase volumes of the bulk phases, defined as the fraction of space that each phase

occupies, and the corresponding highly dynamical nature of the C.B. phase state. Since the profiles of ρ+ and
ρ− are symmetric, each one of them carries exactly half of the total mass Lρ0/2. Besides, given that± bands
counter-propagate at constant speed, their overlap region varies periodically with time. We report in
figure 7(c) the corresponding dynamics of the phase volumes for a mean density below the intermediate
binodal (ρ0 < ρi). The maximal phase volume of the intermediate phase νmax

i is set by the usual lever rule
between the intermediate and gas binodals: νmax

i = (ρi − ρ0)/
(
ρi − ρg

)
. Then, the maximal phase volume

for the liquid phase occurs at perfect overlap of the± profiles and is exactly νmax
i /2, as shown in figure 7(c).

Interestingly, one can formulate a necessary condition for the emergence of the C.B. phase state. Indeed,
the liquid and gas binodals must lie outside the spinodals ρsg and ρsl :

ρg (T)< ρsg (T)< ρsl (T)< ρl (T) . (25)

The condition (25) must hold across the C.B. phase. In particular, it should hold in the vicinity of the
maximum of f, where the C.B. phase first emerges. Approximating f(ρ) by a parabola in this region, the
spinodal densities ρsg,l defined in (13) are symmetrically positioned around the maximum ρ∗:

ρsg ≃ ρ∗ −∆s, ρsl ≃ ρ∗ +∆s, ∆s =

√
2ϵf(ρ∗)

|f ′ ′ (ρ∗)|
, ϵ=

f(ρ∗)−T

f(ρ∗)
≪ 1. (26)

11
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Figure 7. (a) and (b) The± counterpropagating bands profiles are perfectly anti-symmetric: ρ+ ≃ ρ̄(x−Vt) and
ρ− ≃ ρ̄(−x−Vt) coincide when reflected and superimposed. (c) The periodic evolution of the phase volumes of the
intermediate and liquid phases ν i and ν l respectively, for parameter values in figure 6. The complementary gas phase volume (not
shown) is simply νg = 1− νi − νl.

Performing a similar expansion for the maximal magnetization curve in (24) yields

ρmax (T)≃ ρ∗, m0 (ρmax,T)≃ ρ∗
√
3ϵ. (27)

Substituting the expression (27) in (23), and recalling that ρi = ρmax in the C.B. phase, we find that the liquid
and gas binodals are also symmetrically positioned around the maximum:

ρg ≃ ρ∗ −∆b, ρl ≃ ρ∗ +∆b, ∆b =
√
3ϵρ∗. (28)

Finally, the condition (25) for existence of the C.B. phase is equivalent to the ordering∆b >∆s of the
binodal and spinodal gaps. Using the expressions for these gaps, respectively in (26) and (28), we arrive at the
following condition for the curvature near the maximum:

ρ∗2 |f ′ ′ (ρ∗)|
f(ρ∗)

>
2

3
. (29)

Remarkably, the condition (29) is independent of the Péclet number, which corroborates that the C.B. phase
appears as a singular perturbation of the underlying equilibrium phase diagram at any finite activity, no
matter how small.

5. Discussion

Our results show that the density-dependence of the aligning interactions can play an unexpectedly major
role in flocking models, yielding a richer flocking phenomenology than any previously reported. These
results are found by choosing a thermodynamically consistent approach which entails a proper equilibrium
limit, pertaining to the universality class of Model C [16, 39], at vanishing self-propulsion. Such rich
phenomenology should not be restricted to thermodynamically consistent models provided an appropriate
choice of density dependent interactions. However, we find that thermodynamically consistent models are
best suited for anticipating and understanding these phenomena. In particular, the spinodal condition (13)
which is given in terms of the equilibrium free energy, helps rationalize why a tricritical point in the
equilbirium limit (figure 2(a)) ‘runs away’ to infinite density in the presence of self propulsion (figure 2(b)),
recovering the standard scenario of discontinuous flocking [2]. Moreover, for non-monotonic alignment f,
one has that the pair of tricritical points that exist in the equilibrium limit (figure 4(a)) must collide at the
maximum of f in the presence of self propulsion, giving way to more exotic phase topologies which could
involve either an azeotropic point (figure 4(b)) or a region of counterpropagating bands phase (figure 5(b)).
Remarkably, in contrast with standard flocking models [2], the flocking transition is continuous in the
presence of an azeotropic point, while remaining discontinuous elsewhere on the phase diagram.

Our models employ a diffusive scaling of the microscopic rates to allow for an analytically exact
derivation of a hydrodynamic description. However, the phenomenology is expected to persist for models
without such scaling. Indeed, although the hydrodynamic description of the AIM employs a similar diffusive
scaling, microscopic simulations show that the predicted flocking transition phenomenology holds without
such scaling, see [12]. The mesoscopic interaction range∆x used here enables these phenomena to appear in
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our simple one-dimensional setting. We expect that in higher dimensions much of the phenomenology
would survive also for locally interacting models.

Given the rich topology of these phase diagrams, it would be interesting to examine how the entropy
production rate (EPR) varies across the various phase transitions that we have unveiled. In thermal
systems [19, 27], EPR measures both the breakdown of time-reversal symmetry and the amount of energy
dissipated by nonequilibrium currents. For flocking systems, irreversibility measures have been provided in
both microscopic models [45–48] and field theories [49, 50]. Yet, these measures should coincide with a
quantification of dissipation only for thermodynamically consistent models [51–53]. In that respect, our
approach opens the unprecedented opportunity to properly study how the dissipation varies across the
flocking transition. For instance, it could lead to a spatial resolution of dissipation, thus uncovering the
profile of energy dissipation associated with travelling bands.
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Appendix A. Deriving hydrodynamic equations

The microscopic dynamics described in section 2 consists of biased diffusive hops along with reaction
dynamics. To derive the corresponding hydrodynamics, we follow the recipe outlined in [28], which has
already been implemented in other models involving active lattice gases [15, 36–38]. A necessary property for
the derivation is that the underlying microscopic dynamics is dominated by symmetric diffusive hops, which
have the fastest transition rate.

First, we express the Hamiltonian (2) in terms of the hydrodynamic fields (4). Assuming that these fields
are slowly varying over the macroscopic scale (which will be verified a posteriori), then one has, to leading
order at large L,

H=
L

ℓs

ˆ ℓs

0
dxH [ρ(x, t) ,m(x, t)] , (A.1)

with the Hamiltonian density

H (ρ,m) =−m2

2ρ
f(ρ) . (A.2)

When a+ particle at position i = Lxi/ℓs hops to the right, the field variations follow as

ρ→ ρ+
ℓs
L
δ (x− xi+1)−

ℓs
L
δ (x− xi) = ρ− ℓ2s

L2
∂xδ (x− xi)+ o

(
L−2
)
. (A.3)

Similarly, we have

m→m− ℓ2s
L2

∂xδ (x− xi)+ o
(
L−2
)
, (A.4)

and analogous expressions hold for the other jumps. The expression for the field variations under a flip of
+→− is simply given by

ρ→ ρ, m→m− 2
ℓs
L
δ (x− xi)+ o

(
L−1
)
. (A.5)

Substituting the expressions (A.3) and (A.4) into (A.1), we find that the jump of a+ particle to the right
leads to the Hamiltonian increment

∆H=
ℓs
L
∂x

(
δH

δρ
+

δH

δm

)
, (A.6)
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with similar expressions hold for the other jumps. The Hamiltonian increment under+→− flipping is
simply

∆H=−2
δH

δm
. (A.7)

Substituting (A.6) and (A.7) in the definition of the rates of section 2, we find that these rates are functions of
the local fields to leading order:

rate+ (i→ i+ 1) = D0

[
1+

1

L

(
λ

D0
− β

2
ℓs∂x

(
δH

δρ
+

δH

δm

)∣∣∣∣
ρ(x,t),m(x,t)

)]
,

rate+ (i→ i− 1) = D0

[
1+

βℓs
2L

(
δH

δρ
+

δH

δm

)∣∣∣∣
ρ(x,t),m(x,t)

]
,

rate− (i→ i+ 1) = D0

[
1− βℓs

2L

(
δH

δρ
− δH

δm

)∣∣∣∣
ρ(x,t),m(x,t)

]
,

rate− (i→ i− 1) = D0

[
1+

1

L

(
λ

D0
+

β

2
ℓs∂x

(
δH

δρ
− δH

δm

)∣∣∣∣
ρ(x,t),m(x,t)

)]
,

rate(+→−) =
γ

L2
eβ

δH
δm . (A.8)

Importantly, the leading order terms are symmetric hops with rate D0. These dominate over both the
asymmetricO

(
L−1
)
jump rate, and over the slowerO

(
L−2
)
tumbling rate defined in section 2. This

timescale separation guarantees that the measure is controlled by the simple symmetric hop rules
corresponding to noninteracting random walkers [28]. It is then straightforward to write down the coupled
hydrodynamics of the ρ+ and ρ− fields

[
∂tρ+
∂tρ−

]
=−∂x

[
Jρ+

Jρ−

]
+

[
−K
K

]
. (A.9)

The hydrodynamic fluxes are found by coarse-graining, using the hydrodynamic coordinates x= ℓsi/L and
t= γ t̂/L2, with t̂ the time variable of the microscopic dynamics:

Jρ+
=−∂xρ+ −βρ+∂x

(
δH

δρ
+

δH

δm

)
+Peρ+,

Jρ− =−∂xρ− −βρ−∂x

(
δH

δρ
− δH

δm

)
−Peρ−, (A.10)

and, following the same steps, the tumbling rate reads

K=meβ
δH
δm . (A.11)

Note that, when sending β→ 0 in (A.10), one recovers the fluxes of AIM [13]. Finally, one obtains the
expressions (6) and (7) in terms of ρ andm with a few steps of algebra. Interestingly, in the equilibrium limit
(Pe= 0), the free energy F serves as a Lyapunov function:

dF

dt
=− L

ℓs

ˆ ℓs

0
dx

{
1

2
∂x

[ δF
δρ
δF
δm

]†
C(ρ,m)∂x

[ δF
δρ
δF
δm

]
+ 2M

δF

δm
sinh

(
δF

δm

)}
⩽ 0, (A.12)

where we have used thatM> 0 and C is positive semi-definite. The case dF/dt= 0 is achieved in steady state.
In the presence of noise, this case corresponds to the system eventually relaxing towards the minimum
δF/δρ= δF/δm= 0. Notice, however, that the well-posedness of this hydrodynamic description must break
in the equilibrium limit Pe= 0 for any non-convex free energy F (7). It is cured by retaining sub-leading
interfacial termsO

(
L−2|∇ρ|2,L−2|∇m|2

)
.
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Appendix B. Spinodals and binodals in the equilibrium limit

As mentioned in section 3.1, the density spinodal (15), which is complementary to the magnetization
one (13), marks the boundary of the convex region of the single-variable function F [ρ,m0 (ρ,T)] [42].
Indeed, this boundary is given by

∂2F
∂ρ2

∣∣∣∣
ρ0,m0(ρ,T)

+
∂2F
∂ρ∂m

∣∣∣∣
ρ0,m0(ρ,T)

∂m0 (ρ,T)

∂ρ

∣∣∣∣
ρ0

= 0, (B.1)

where we used the fact that, in the ordered statem0 (ρ0,T), we have

∂F
∂m

∣∣∣∣
ρ0,m0(ρ,T)

= 0. (B.2)

Differentiating (B.2) with respect to ρ yields

∂m0 (ρ,T)

∂ρ

∣∣∣∣
ρ0

=−
(

∂2F
∂ρ∂m

/
∂2F
∂2m

)∣∣∣∣
ρ0,m0(ρ0,T)

. (B.3)

Plugging the relation (B.3) into (B.1), it follows that finding the density spinodal is equivalent to locating the
onset of local non-convexity of the two-variable free energy:

|Hess(F)|ρ0,m0(ρ0,T)
= 0. (B.4)

The density spinodal can be expressed in an implicit parametric form, since all partial derivatives
entering (B.4) are explicit functions of ρ andm. Indeed, we can use the parametric representation (14)

z=
m0

ρ0
, T(z,ρ0) =

z

arctanh(z)
f(ρ0) , (B.5)

to explicitly write (B.4) as(
1

1− z2
− arctanh(z)

z

)[
1− xarctanh(z)

2

(d/dρ)
(
ρ2f ′ (ρ)

)
f(ρ)

]
= arctanh2 (z)

(
ρf ′ (ρ)

f(ρ)

)2

, (B.6)

which gives z= z(ρ0) in an implicit form, from which follows the curve T(ρ0) for the density spinodal. This
procedure allows us to determine the corresponding curves in figures 2(a), 4(a) and 5(a).

The binodals are found by the common-tangent construction over the single-variable free energy
F [ρ,m0 (ρ0,T)], which can result in several possible phase-diagram topologies [42]. The binodals
correspond to the coexistence between dense and dilute phases. For monotonic f(ρ) in section 3, it is always
the dense and the dilute phases which are respectively ordered (m=m0(ρ,T)) and disordered (m= 0). Yet,
one can have the opposite case for non-monotonic f(ρ), as explained in section 4. For illustration purposes,
considering here the case of monotonic f(ρ), the condition for common tangent is given by

F [ρl,m0 (ρl,T)] = F
(
ρg,m= 0

)
+ ∂ρF

(
ρg,m= 0

)(
ρl − ρg

)
,

∂ρF [ρl,m0 (ρl,T)] = ∂ρF
(
ρg,m= 0

)
, (B.7)

which explicitly reads

ρl
2

[
ln

ρ2l
(
1− z2

)
4

+ z ln
1+ z

1− z

]
− ρl −β

ρlz2

2
f(ρl) = ρg

(
log

ρg
2
− 1
)
+ log

ρg
2

(
ρl − ρg

)
,

log
(ρl
2

√
1− z2

)
− βz2

2
[ρlf

′ (ρl)− f(ρl)] = log
ρg
2
, (B.8)

where we have used the parametric representation z=m0(ρl,T)/ρl. Substituting the temperature
relation (B.5) into (B.8), we get

1−
ρg
ρl

=
zarctanhz

2

ρlf ′ (ρl)

f(ρl)
,

ρg
ρl

=
√
1− z2e

− zarctanhz
2

[
ρl f

′(ρl)
f(ρl)

−1

]
(B.9)

which finally gives the two binodals in an implicit parametric representation for ρl (z), ρg (z) and T= T(z).
The tricritical point is defined as the meeting point of the two binodals (B.9), which is also the meeting point
of the two spinodals (B.6) and (13). This occurs at vanishing z=m0/ρ0. Indeed, expanding either one of
these expressions at small x leads to (16).
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Appendix C. Linear instability in the nonequilibrium case

To derive the expression of the density spinodal in (18), we examine the linear stability of the dynamics (5)
and (6) around the homogeneous solutions ρ(x, t) = ρ0 + δρ(x, t) andm(x, t) =m0 (ρ0,T)+ δm(x, t),
wherem0 is given by (14). Using the Fourier convention for an arbitrary field X:

δX(x, t) =
∑
n

δXn (t)e
iknx, kn = 2πn/ℓs, (C.1)

we arrive at the following mode dynamics

d

dt

[
δρn
δmn

]
=M

[
δρn
δmn

]
, (C.2)

where the stability matrixM reads

M=

[
−k2A −k2B−Peik

−k2C−Peik− 2α2 −k2D− 2α3

]∣∣∣∣
ρ0,m0(ρ0,T)

(C.3)

with

A= ρ∂ρρF +m∂ρmF , B= ρ∂ρmF +m∂mmF , α2 =M∂ρmF ,

C=m∂ρρF + ρ∂ρmF , D=m∂ρmF + ρ∂mmF , α3 =M∂mmF , (C.4)

andM(ρ,m) =
√
ρ2 +m2. The eigenvalues of (C.3) are of the form

Λ1,2 =
1

2

[
Tr±

√
Tr2 − 4Det

]
, (C.5)

where

Tr=−
[
2α3 + k2 (A+D)

]
, Tr2 − 4Det= a2 + ikb+ k2c+O

(
k3
)
, (C.6)

with

a= 2α3, b= 8Peα2, c= 4
[
α3 (D−A)+ 2Bα2 −Pe2

]
, (C.7)

yielding

Re
[√

Tr2 − 4Det
]
= a+

k2

a

(
b2

8a2
+

c

2

)
+O

(
k4
)
, Im

[√
Tr2 − 4Det

]
= k

b

2a
+O

(
k3
)
, (C.8)

where we used that α3 ∝ ∂mmF > 0 at the magnetized state [ρ0,m0 (ρ0,T)]. (Note that the expressions a,b, c
in (C.7) are not to be confused with the Model C coefficients (11).) Then, the eigenvalue with the larger real
part is given by

Λ+ = ikPe
∂ρmF
∂mmF

+ k2
{

Pe2

2MFmm

[(
∂ρmF
∂mmF

)2

− 1

]
+

ρ0Hess(F)

Fmm

}
. (C.9)

The condition of vanishing real part for the eigenvalue (C.9) yields the ordered spinodal (18).

Appendix D. Details on numerical solution of the hydrodynamics

To numerically solve the hydrodynamics (5) and (6) we employ a finite difference scheme. We solve it on a
segment of length ℓs = 500 with periodic boundary conditions. The interfacial width isO (1) and the
resulting traveling wave profiles have well resolved bulk phases as seen in figures 2(c), 4(c) and 5(c). The
profiles were initiated at a homogeneous state with small sinusoidal perturbation. We have confirmed that
the final traveling wave profile at steady state is robust for other choices of initial conditions. For some of
these the relaxation to steady state proceeded via a traveling wave with multiple phase boundaries which
coarsen over time towards a single phase-separated profile with sharp interfaces.

Generic values for space and time discretization are dx= 0.1 and dt= 0.001. However, at low
temperatures the interfaces become increasingly sharper and finer meshes were chosen. Indeed, in the limit
β →∞ the free energy (7) diverges. Thus, the dynamics is dominated by the equilibrium free energy
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derivatives entering (6). As noted in appendix A, the equilibrium hydrodynamics becomes ill-defined for any
non-convex free energy F since this free energy is missing the standard interfacial energy terms and the
width of the interfacial profile will vanish. The self propulsion terms in (6) cure this and assign a finite
interface width, but this decreases with decreasing temperature and is hard to resolve numerically. Luckily,
due to the same reasoning, close to vanishing temperatures the binodals of the non-equilibrium phase
diagram Pe> 0 must approach those of the equilibrium Pe= 0 limit. As explained in appendix B, the latter
are determined analytically without the need of solving the hydrodynamics (5) and (6), which for the
equilibrium case are ill-defined. We use these equilibrium asymptotics to extend the binodal curves of the
non-equilibrium phase diagrams all the way to zero temperature (the numerically computed curves at small
temperatures are found to match them smoothly).
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